Commit
•
3c9cfa7
1
Parent(s):
c629a07
Fix `license` metadata (#1)
Browse files- Fix `license` metadata (84bb9d7c04f066a4d169d0bd6218200d21bc31d8)
Co-authored-by: Julien Chaumond <[email protected]>
README.md
CHANGED
@@ -1,213 +1,213 @@
|
|
1 |
-
---
|
2 |
-
annotations_creators:
|
3 |
-
- no-annotation
|
4 |
-
language_creators:
|
5 |
-
- found
|
6 |
-
|
7 |
-
- as
|
8 |
-
- bn
|
9 |
-
- gu
|
10 |
-
- hi
|
11 |
-
- kn
|
12 |
-
- ml
|
13 |
-
- mr
|
14 |
-
- or
|
15 |
-
- pa
|
16 |
-
- ta
|
17 |
-
- te
|
18 |
-
|
19 |
-
- cc-by-nc-4.0
|
20 |
-
multilinguality:
|
21 |
-
- multilingual
|
22 |
-
pretty_name: IndicQuestionGeneration
|
23 |
-
size_categories:
|
24 |
-
- 98K<n<98K
|
25 |
-
source_datasets:
|
26 |
-
- we start with the SQuAD question answering dataset repurposed to serve as a question generation dataset. We translate this dataset into different Indic languages.
|
27 |
-
task_categories:
|
28 |
-
- conditional-text-generation
|
29 |
-
task_ids:
|
30 |
-
- conditional-text-generation-other-question-generation
|
31 |
-
---
|
32 |
-
|
33 |
-
# Dataset Card for "IndicQuestionGeneration"
|
34 |
-
|
35 |
-
## Table of Contents
|
36 |
-
- [Dataset Card Creation Guide](#dataset-card-creation-guide)
|
37 |
-
- [Table of Contents](#table-of-contents)
|
38 |
-
- [Dataset Description](#dataset-description)
|
39 |
-
- [Dataset Summary](#dataset-summary)
|
40 |
-
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
41 |
-
- [Languages](#languages)
|
42 |
-
- [Dataset Structure](#dataset-structure)
|
43 |
-
- [Data Instances](#data-instances)
|
44 |
-
- [Data Fields](#data-fields)
|
45 |
-
- [Data Splits](#data-splits)
|
46 |
-
- [Dataset Creation](#dataset-creation)
|
47 |
-
- [Curation Rationale](#curation-rationale)
|
48 |
-
- [Source Data](#source-data)
|
49 |
-
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
|
50 |
-
- [Who are the source language producers?](#who-are-the-source-language-producers)
|
51 |
-
- [Annotations](#annotations)
|
52 |
-
- [Annotation process](#annotation-process)
|
53 |
-
- [Who are the annotators?](#who-are-the-annotators)
|
54 |
-
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
55 |
-
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
56 |
-
- [Social Impact of Dataset](#social-impact-of-dataset)
|
57 |
-
- [Discussion of Biases](#discussion-of-biases)
|
58 |
-
- [Other Known Limitations](#other-known-limitations)
|
59 |
-
- [Additional Information](#additional-information)
|
60 |
-
- [Dataset Curators](#dataset-curators)
|
61 |
-
- [Licensing Information](#licensing-information)
|
62 |
-
- [Citation Information](#citation-information)
|
63 |
-
- [Contributions](#contributions)
|
64 |
-
|
65 |
-
## Dataset Description
|
66 |
-
|
67 |
-
- **Homepage:** https://indicnlp.ai4bharat.org/indicnlg-suite
|
68 |
-
- **Paper:** [IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages](https://arxiv.org/abs/2203.05437)
|
69 |
-
- **Point of Contact:**
|
70 |
-
|
71 |
-
### Dataset Summary
|
72 |
-
|
73 |
-
IndicQuestionGeneration is the question generation dataset released as part of IndicNLG Suite. Each
|
74 |
-
example has five fields: id, squad_id, answer, context and question. We create this dataset in eleven
|
75 |
-
languages, including as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. This is translated data. The examples in each language are exactly similar but in different languages.
|
76 |
-
The number of examples in each language is 98,027.
|
77 |
-
|
78 |
-
|
79 |
-
### Supported Tasks and Leaderboards
|
80 |
-
|
81 |
-
**Tasks:** Question Generation
|
82 |
-
|
83 |
-
**Leaderboards:** Currently there is no Leaderboard for this dataset.
|
84 |
-
|
85 |
-
### Languages
|
86 |
-
- `Assamese (as)`
|
87 |
-
- `Bengali (bn)`
|
88 |
-
- `Gujarati (gu)`
|
89 |
-
- `Kannada (kn)`
|
90 |
-
- `Hindi (hi)`
|
91 |
-
- `Malayalam (ml)`
|
92 |
-
- `Marathi (mr)`
|
93 |
-
- `Oriya (or)`
|
94 |
-
- `Punjabi (pa)`
|
95 |
-
- `Tamil (ta)`
|
96 |
-
- `Telugu (te)`
|
97 |
-
|
98 |
-
## Dataset Structure
|
99 |
-
|
100 |
-
### Data Instances
|
101 |
-
|
102 |
-
One random example from the `hi` dataset is given below in JSON format.
|
103 |
-
```
|
104 |
-
{
|
105 |
-
"id": 8,
|
106 |
-
"squad_id": "56be8e613aeaaa14008c90d3",
|
107 |
-
"answer": "अमेरिकी फुटबॉल सम्मेलन",
|
108 |
-
"context": "अमेरिकी फुटबॉल सम्मेलन (एएफसी) के चैंपियन डेनवर ब्रोंकोस ने नेशनल फुटबॉल कांफ्रेंस (एनएफसी) की चैंपियन कैरोलिना पैंथर्स को 24-10 से हराकर अपना तीसरा सुपर बाउल खिताब जीता।",
|
109 |
-
"question": "एएफसी का मतलब क्या है?"
|
110 |
-
}
|
111 |
-
```
|
112 |
-
|
113 |
-
### Data Fields
|
114 |
-
- `id (string)`: Unique identifier.
|
115 |
-
- `squad_id (string)`: Unique identifier in Squad dataset.
|
116 |
-
- `answer (strings)`: Answer as one of the two inputs.
|
117 |
-
- `context (string)`: Context, the other input.
|
118 |
-
- `question (string)`: Question, the output.
|
119 |
-
|
120 |
-
|
121 |
-
### Data Splits
|
122 |
-
|
123 |
-
Here is the number of samples in each split for all the languages.
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
Language | ISO 639-1 Code | Train | Dev | Test |
|
129 |
-
---------- | ---------- | ---------- | ---------- | ---------- |
|
130 |
-
Assamese | as | 69,979 | 17,495 | 10,553 |
|
131 |
-
Bengali | bn | 69,979 | 17,495 | 10,553 |
|
132 |
-
Gujarati | gu | 69,979 | 17,495 | 10,553 |
|
133 |
-
Hindi | hi | 69,979 | 17,495 | 10,553 |
|
134 |
-
Kannada | kn | 69,979 | 17,495 | 10,553 |
|
135 |
-
Malayalam | ml | 69,979 | 17,495 | 10,553 |
|
136 |
-
Marathi | mr | 69,979 | 17,495 | 10,553 |
|
137 |
-
Oriya | or | 69,979 | 17,495 | 10,553 |
|
138 |
-
Punjabi | pa | 69,979 | 17,495 | 10,553 |
|
139 |
-
Tamil | ta | 69,979 | 17,495 | 10,553 |
|
140 |
-
Telugu | te | 69,979 | 17,495 | 10,553 |
|
141 |
-
|
142 |
-
|
143 |
-
## Dataset Creation
|
144 |
-
|
145 |
-
### Curation Rationale
|
146 |
-
|
147 |
-
[Detailed in the paper](https://arxiv.org/abs/2203.05437)
|
148 |
-
|
149 |
-
### Source Data
|
150 |
-
|
151 |
-
Squad Dataset(https://rajpurkar.github.io/SQuAD-explorer/)
|
152 |
-
|
153 |
-
#### Initial Data Collection and Normalization
|
154 |
-
|
155 |
-
[Detailed in the paper](https://arxiv.org/abs/2203.05437)
|
156 |
-
|
157 |
-
|
158 |
-
#### Who are the source language producers?
|
159 |
-
|
160 |
-
[Detailed in the paper](https://arxiv.org/abs/2203.05437)
|
161 |
-
|
162 |
-
|
163 |
-
### Annotations
|
164 |
-
[More information needed]
|
165 |
-
#### Annotation process
|
166 |
-
[More information needed]
|
167 |
-
|
168 |
-
#### Who are the annotators?
|
169 |
-
|
170 |
-
[More information needed]
|
171 |
-
|
172 |
-
### Personal and Sensitive Information
|
173 |
-
|
174 |
-
[More information needed]
|
175 |
-
|
176 |
-
## Considerations for Using the Data
|
177 |
-
|
178 |
-
### Social Impact of Dataset
|
179 |
-
|
180 |
-
[More information needed]
|
181 |
-
|
182 |
-
### Discussion of Biases
|
183 |
-
|
184 |
-
[More information needed]
|
185 |
-
|
186 |
-
### Other Known Limitations
|
187 |
-
|
188 |
-
[More information needed]
|
189 |
-
|
190 |
-
## Additional Information
|
191 |
-
|
192 |
-
### Dataset Curators
|
193 |
-
|
194 |
-
[More information needed]
|
195 |
-
|
196 |
-
### Licensing Information
|
197 |
-
|
198 |
-
Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/). Copyright of the dataset contents belongs to the original copyright holders.
|
199 |
-
### Citation Information
|
200 |
-
|
201 |
-
If you use any of the datasets, models or code modules, please cite the following paper:
|
202 |
-
```
|
203 |
-
@inproceedings{Kumar2022IndicNLGSM,
|
204 |
-
title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages},
|
205 |
-
author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar},
|
206 |
-
year={2022},
|
207 |
-
url = "https://arxiv.org/abs/2203.05437",
|
208 |
-
```
|
209 |
-
|
210 |
-
|
211 |
-
### Contributions
|
212 |
-
|
213 |
[Detailed in the paper](https://arxiv.org/abs/2203.05437)
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- no-annotation
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
language:
|
7 |
+
- as
|
8 |
+
- bn
|
9 |
+
- gu
|
10 |
+
- hi
|
11 |
+
- kn
|
12 |
+
- ml
|
13 |
+
- mr
|
14 |
+
- or
|
15 |
+
- pa
|
16 |
+
- ta
|
17 |
+
- te
|
18 |
+
license:
|
19 |
+
- cc-by-nc-4.0
|
20 |
+
multilinguality:
|
21 |
+
- multilingual
|
22 |
+
pretty_name: IndicQuestionGeneration
|
23 |
+
size_categories:
|
24 |
+
- 98K<n<98K
|
25 |
+
source_datasets:
|
26 |
+
- we start with the SQuAD question answering dataset repurposed to serve as a question generation dataset. We translate this dataset into different Indic languages.
|
27 |
+
task_categories:
|
28 |
+
- conditional-text-generation
|
29 |
+
task_ids:
|
30 |
+
- conditional-text-generation-other-question-generation
|
31 |
+
---
|
32 |
+
|
33 |
+
# Dataset Card for "IndicQuestionGeneration"
|
34 |
+
|
35 |
+
## Table of Contents
|
36 |
+
- [Dataset Card Creation Guide](#dataset-card-creation-guide)
|
37 |
+
- [Table of Contents](#table-of-contents)
|
38 |
+
- [Dataset Description](#dataset-description)
|
39 |
+
- [Dataset Summary](#dataset-summary)
|
40 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
41 |
+
- [Languages](#languages)
|
42 |
+
- [Dataset Structure](#dataset-structure)
|
43 |
+
- [Data Instances](#data-instances)
|
44 |
+
- [Data Fields](#data-fields)
|
45 |
+
- [Data Splits](#data-splits)
|
46 |
+
- [Dataset Creation](#dataset-creation)
|
47 |
+
- [Curation Rationale](#curation-rationale)
|
48 |
+
- [Source Data](#source-data)
|
49 |
+
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
|
50 |
+
- [Who are the source language producers?](#who-are-the-source-language-producers)
|
51 |
+
- [Annotations](#annotations)
|
52 |
+
- [Annotation process](#annotation-process)
|
53 |
+
- [Who are the annotators?](#who-are-the-annotators)
|
54 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
55 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
56 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
57 |
+
- [Discussion of Biases](#discussion-of-biases)
|
58 |
+
- [Other Known Limitations](#other-known-limitations)
|
59 |
+
- [Additional Information](#additional-information)
|
60 |
+
- [Dataset Curators](#dataset-curators)
|
61 |
+
- [Licensing Information](#licensing-information)
|
62 |
+
- [Citation Information](#citation-information)
|
63 |
+
- [Contributions](#contributions)
|
64 |
+
|
65 |
+
## Dataset Description
|
66 |
+
|
67 |
+
- **Homepage:** https://indicnlp.ai4bharat.org/indicnlg-suite
|
68 |
+
- **Paper:** [IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages](https://arxiv.org/abs/2203.05437)
|
69 |
+
- **Point of Contact:**
|
70 |
+
|
71 |
+
### Dataset Summary
|
72 |
+
|
73 |
+
IndicQuestionGeneration is the question generation dataset released as part of IndicNLG Suite. Each
|
74 |
+
example has five fields: id, squad_id, answer, context and question. We create this dataset in eleven
|
75 |
+
languages, including as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. This is translated data. The examples in each language are exactly similar but in different languages.
|
76 |
+
The number of examples in each language is 98,027.
|
77 |
+
|
78 |
+
|
79 |
+
### Supported Tasks and Leaderboards
|
80 |
+
|
81 |
+
**Tasks:** Question Generation
|
82 |
+
|
83 |
+
**Leaderboards:** Currently there is no Leaderboard for this dataset.
|
84 |
+
|
85 |
+
### Languages
|
86 |
+
- `Assamese (as)`
|
87 |
+
- `Bengali (bn)`
|
88 |
+
- `Gujarati (gu)`
|
89 |
+
- `Kannada (kn)`
|
90 |
+
- `Hindi (hi)`
|
91 |
+
- `Malayalam (ml)`
|
92 |
+
- `Marathi (mr)`
|
93 |
+
- `Oriya (or)`
|
94 |
+
- `Punjabi (pa)`
|
95 |
+
- `Tamil (ta)`
|
96 |
+
- `Telugu (te)`
|
97 |
+
|
98 |
+
## Dataset Structure
|
99 |
+
|
100 |
+
### Data Instances
|
101 |
+
|
102 |
+
One random example from the `hi` dataset is given below in JSON format.
|
103 |
+
```
|
104 |
+
{
|
105 |
+
"id": 8,
|
106 |
+
"squad_id": "56be8e613aeaaa14008c90d3",
|
107 |
+
"answer": "अमेरिकी फुटबॉल सम्मेलन",
|
108 |
+
"context": "अमेरिकी फुटबॉल सम्मेलन (एएफसी) के चैंपियन डेनवर ब्रोंकोस ने नेशनल फुटबॉल कांफ्रेंस (एनएफसी) की चैंपियन कैरोलिना पैंथर्स को 24-10 से हराकर अपना तीसरा सुपर बाउल खिताब जीता।",
|
109 |
+
"question": "एएफसी का मतलब क्या है?"
|
110 |
+
}
|
111 |
+
```
|
112 |
+
|
113 |
+
### Data Fields
|
114 |
+
- `id (string)`: Unique identifier.
|
115 |
+
- `squad_id (string)`: Unique identifier in Squad dataset.
|
116 |
+
- `answer (strings)`: Answer as one of the two inputs.
|
117 |
+
- `context (string)`: Context, the other input.
|
118 |
+
- `question (string)`: Question, the output.
|
119 |
+
|
120 |
+
|
121 |
+
### Data Splits
|
122 |
+
|
123 |
+
Here is the number of samples in each split for all the languages.
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
Language | ISO 639-1 Code | Train | Dev | Test |
|
129 |
+
---------- | ---------- | ---------- | ---------- | ---------- |
|
130 |
+
Assamese | as | 69,979 | 17,495 | 10,553 |
|
131 |
+
Bengali | bn | 69,979 | 17,495 | 10,553 |
|
132 |
+
Gujarati | gu | 69,979 | 17,495 | 10,553 |
|
133 |
+
Hindi | hi | 69,979 | 17,495 | 10,553 |
|
134 |
+
Kannada | kn | 69,979 | 17,495 | 10,553 |
|
135 |
+
Malayalam | ml | 69,979 | 17,495 | 10,553 |
|
136 |
+
Marathi | mr | 69,979 | 17,495 | 10,553 |
|
137 |
+
Oriya | or | 69,979 | 17,495 | 10,553 |
|
138 |
+
Punjabi | pa | 69,979 | 17,495 | 10,553 |
|
139 |
+
Tamil | ta | 69,979 | 17,495 | 10,553 |
|
140 |
+
Telugu | te | 69,979 | 17,495 | 10,553 |
|
141 |
+
|
142 |
+
|
143 |
+
## Dataset Creation
|
144 |
+
|
145 |
+
### Curation Rationale
|
146 |
+
|
147 |
+
[Detailed in the paper](https://arxiv.org/abs/2203.05437)
|
148 |
+
|
149 |
+
### Source Data
|
150 |
+
|
151 |
+
Squad Dataset(https://rajpurkar.github.io/SQuAD-explorer/)
|
152 |
+
|
153 |
+
#### Initial Data Collection and Normalization
|
154 |
+
|
155 |
+
[Detailed in the paper](https://arxiv.org/abs/2203.05437)
|
156 |
+
|
157 |
+
|
158 |
+
#### Who are the source language producers?
|
159 |
+
|
160 |
+
[Detailed in the paper](https://arxiv.org/abs/2203.05437)
|
161 |
+
|
162 |
+
|
163 |
+
### Annotations
|
164 |
+
[More information needed]
|
165 |
+
#### Annotation process
|
166 |
+
[More information needed]
|
167 |
+
|
168 |
+
#### Who are the annotators?
|
169 |
+
|
170 |
+
[More information needed]
|
171 |
+
|
172 |
+
### Personal and Sensitive Information
|
173 |
+
|
174 |
+
[More information needed]
|
175 |
+
|
176 |
+
## Considerations for Using the Data
|
177 |
+
|
178 |
+
### Social Impact of Dataset
|
179 |
+
|
180 |
+
[More information needed]
|
181 |
+
|
182 |
+
### Discussion of Biases
|
183 |
+
|
184 |
+
[More information needed]
|
185 |
+
|
186 |
+
### Other Known Limitations
|
187 |
+
|
188 |
+
[More information needed]
|
189 |
+
|
190 |
+
## Additional Information
|
191 |
+
|
192 |
+
### Dataset Curators
|
193 |
+
|
194 |
+
[More information needed]
|
195 |
+
|
196 |
+
### Licensing Information
|
197 |
+
|
198 |
+
Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/). Copyright of the dataset contents belongs to the original copyright holders.
|
199 |
+
### Citation Information
|
200 |
+
|
201 |
+
If you use any of the datasets, models or code modules, please cite the following paper:
|
202 |
+
```
|
203 |
+
@inproceedings{Kumar2022IndicNLGSM,
|
204 |
+
title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages},
|
205 |
+
author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar},
|
206 |
+
year={2022},
|
207 |
+
url = "https://arxiv.org/abs/2203.05437",
|
208 |
+
```
|
209 |
+
|
210 |
+
|
211 |
+
### Contributions
|
212 |
+
|
213 |
[Detailed in the paper](https://arxiv.org/abs/2203.05437)
|