achinthani commited on
Commit
d901868
1 Parent(s): 7068e71

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +258 -155
README.md CHANGED
@@ -1,157 +1,260 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: text
5
- dtype: string
6
- id: field
7
- - name: sentiment
8
- list:
9
- - name: user_id
10
- dtype: string
11
- id: question
12
- - name: value
13
- dtype: string
14
- id: suggestion
15
- - name: status
16
- dtype: string
17
- id: question
18
- - name: sentiment-suggestion
19
- dtype: string
20
- id: suggestion
21
- - name: sentiment-suggestion-metadata
22
- struct:
23
- - name: type
24
- dtype: string
25
- id: suggestion-metadata
26
- - name: score
27
- dtype: float32
28
- id: suggestion-metadata
29
- - name: agent
30
- dtype: string
31
- id: suggestion-metadata
32
- - name: mixed-emotion
33
- list:
34
- - name: user_id
35
- dtype: string
36
- id: question
37
- - name: value
38
- sequence: string
39
- id: suggestion
40
- - name: status
41
- dtype: string
42
- id: question
43
- - name: mixed-emotion-suggestion
44
- sequence: string
45
- id: suggestion
46
- - name: mixed-emotion-suggestion-metadata
47
- struct:
48
- - name: type
49
- dtype: string
50
- id: suggestion-metadata
51
- - name: score
52
- dtype: float32
53
- id: suggestion-metadata
54
- - name: agent
55
- dtype: string
56
- id: suggestion-metadata
57
- - name: ranking
58
- list:
59
- - name: user_id
60
- dtype: string
61
- id: question
62
- - name: value
63
- sequence:
64
- - name: rank
65
- dtype: uint8
66
- - name: value
67
- dtype: string
68
- id: suggestion
69
- - name: status
70
- dtype: string
71
- id: question
72
- - name: ranking-suggestion
73
- sequence:
74
- - name: rank
75
- dtype: uint8
76
- - name: value
77
- dtype: string
78
- id: suggestion
79
- - name: ranking-suggestion-metadata
80
- struct:
81
- - name: type
82
- dtype: string
83
- id: suggestion-metadata
84
- - name: score
85
- dtype: float32
86
- id: suggestion-metadata
87
- - name: agent
88
- dtype: string
89
- id: suggestion-metadata
90
- - name: rating
91
- list:
92
- - name: user_id
93
- dtype: string
94
- id: question
95
- - name: value
96
- dtype: int32
97
- id: suggestion
98
- - name: status
99
- dtype: string
100
- id: question
101
- - name: rating-suggestion
102
- dtype: int32
103
- id: suggestion
104
- - name: rating-suggestion-metadata
105
- struct:
106
- - name: type
107
- dtype: string
108
- id: suggestion-metadata
109
- - name: score
110
- dtype: float32
111
- id: suggestion-metadata
112
- - name: agent
113
- dtype: string
114
- id: suggestion-metadata
115
- - name: text-annotation
116
- list:
117
- - name: user_id
118
- dtype: string
119
- id: question
120
- - name: value
121
- dtype: string
122
- id: suggestion
123
- - name: status
124
- dtype: string
125
- id: question
126
- - name: text-annotation-suggestion
127
- dtype: string
128
- id: suggestion
129
- - name: text-annotation-suggestion-metadata
130
- struct:
131
- - name: type
132
- dtype: string
133
- id: suggestion-metadata
134
- - name: score
135
- dtype: float32
136
- id: suggestion-metadata
137
- - name: agent
138
- dtype: string
139
- id: suggestion-metadata
140
- - name: external_id
141
- dtype: string
142
- id: external_id
143
- - name: metadata
144
- dtype: string
145
- id: metadata
146
- splits:
147
- - name: train
148
- num_bytes: 4330
149
- num_examples: 20
150
- download_size: 24565
151
- dataset_size: 4330
152
- configs:
153
- - config_name: default
154
- data_files:
155
- - split: train
156
- path: data/train-*
157
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ size_categories: n<1K
3
+ tags:
4
+ - rlfh
5
+ - argilla
6
+ - human-feedback
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  ---
8
+
9
+ # Dataset Card for test-2
10
+
11
+ This dataset has been created with [Argilla](https://docs.argilla.io).
12
+
13
+ As shown in the sections below, this dataset can be loaded into Argilla as explained in [Load with Argilla](#load-with-argilla), or used directly with the `datasets` library in [Load with `datasets`](#load-with-datasets).
14
+
15
+ ## Dataset Description
16
+
17
+ - **Homepage:** https://argilla.io
18
+ - **Repository:** https://github.com/argilla-io/argilla
19
+ - **Paper:**
20
+ - **Leaderboard:**
21
+ - **Point of Contact:**
22
+
23
+ ### Dataset Summary
24
+
25
+ This dataset contains:
26
+
27
+ * A dataset configuration file conforming to the Argilla dataset format named `argilla.yaml`. This configuration file will be used to configure the dataset when using the `FeedbackDataset.from_huggingface` method in Argilla.
28
+
29
+ * Dataset records in a format compatible with HuggingFace `datasets`. These records will be loaded automatically when using `FeedbackDataset.from_huggingface` and can be loaded independently using the `datasets` library via `load_dataset`.
30
+
31
+ * The [annotation guidelines](#annotation-guidelines) that have been used for building and curating the dataset, if they've been defined in Argilla.
32
+
33
+ ### Load with Argilla
34
+
35
+ To load with Argilla, you'll just need to install Argilla as `pip install argilla --upgrade` and then use the following code:
36
+
37
+ ```python
38
+ import argilla as rg
39
+
40
+ ds = rg.FeedbackDataset.from_huggingface("achinthani/test-2")
41
+ ```
42
+
43
+ ### Load with `datasets`
44
+
45
+ To load this dataset with `datasets`, you'll just need to install `datasets` as `pip install datasets --upgrade` and then use the following code:
46
+
47
+ ```python
48
+ from datasets import load_dataset
49
+
50
+ ds = load_dataset("achinthani/test-2")
51
+ ```
52
+
53
+ ### Supported Tasks and Leaderboards
54
+
55
+ This dataset can contain [multiple fields, questions and responses](https://docs.argilla.io/en/latest/conceptual_guides/data_model.html#feedback-dataset) so it can be used for different NLP tasks, depending on the configuration. The dataset structure is described in the [Dataset Structure section](#dataset-structure).
56
+
57
+ There are no leaderboards associated with this dataset.
58
+
59
+ ### Languages
60
+
61
+ [More Information Needed]
62
+
63
+ ## Dataset Structure
64
+
65
+ ### Data in Argilla
66
+
67
+ The dataset is created in Argilla with: **fields**, **questions**, **suggestions**, **metadata**, **vectors**, and **guidelines**.
68
+
69
+ The **fields** are the dataset records themselves, for the moment just text fields are supported. These are the ones that will be used to provide responses to the questions.
70
+
71
+ | Field Name | Title | Type | Required | Markdown |
72
+ | ---------- | ----- | ---- | -------- | -------- |
73
+ | text | Text | text | True | False |
74
+
75
+
76
+ The **questions** are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking.
77
+
78
+ | Question Name | Title | Type | Required | Description | Values/Labels |
79
+ | ------------- | ----- | ---- | -------- | ----------- | ------------- |
80
+ | sentiment | Sentiment | label_selection | True | N/A | ['positive', 'neutral', 'negative'] |
81
+ | mixed-emotion | Mixed-emotion | multi_label_selection | True | N/A | ['joy', 'anger', 'sadness', 'fear', 'surprise', 'love'] |
82
+ | ranking | Ranking | ranking | True | N/A | ['1', '2', '3', '4', '5'] |
83
+ | rating | Rating | rating | True | N/A | [1, 2, 3, 4, 5] |
84
+ | text-annotation | Feedback | text | True | N/A | N/A |
85
+
86
+
87
+ The **suggestions** are human or machine generated recommendations for each question to assist the annotator during the annotation process, so those are always linked to the existing questions, and named appending "-suggestion" and "-suggestion-metadata" to those, containing the value/s of the suggestion and its metadata, respectively. So on, the possible values are the same as in the table above, but the column name is appended with "-suggestion" and the metadata is appended with "-suggestion-metadata".
88
+
89
+ The **metadata** is a dictionary that can be used to provide additional information about the dataset record. This can be useful to provide additional context to the annotators, or to provide additional information about the dataset record itself. For example, you can use this to provide a link to the original source of the dataset record, or to provide additional information about the dataset record itself, such as the author, the date, or the source. The metadata is always optional, and can be potentially linked to the `metadata_properties` defined in the dataset configuration file in `argilla.yaml`.
90
+
91
+
92
+
93
+ | Metadata Name | Title | Type | Values | Visible for Annotators |
94
+ | ------------- | ----- | ---- | ------ | ---------------------- |
95
+
96
+
97
+ The **guidelines**, are optional as well, and are just a plain string that can be used to provide instructions to the annotators. Find those in the [annotation guidelines](#annotation-guidelines) section.
98
+
99
+ ### Data Instances
100
+
101
+ An example of a dataset instance in Argilla looks as follows:
102
+
103
+ ```json
104
+ {
105
+ "external_id": null,
106
+ "fields": {
107
+ "text": "Absolutely infuriated by the lack of accountability in our government. It\u0027s time for real change!"
108
+ },
109
+ "metadata": {},
110
+ "responses": [],
111
+ "suggestions": [],
112
+ "vectors": {}
113
+ }
114
+ ```
115
+
116
+ While the same record in HuggingFace `datasets` looks as follows:
117
+
118
+ ```json
119
+ {
120
+ "external_id": null,
121
+ "metadata": "{}",
122
+ "mixed-emotion": [],
123
+ "mixed-emotion-suggestion": null,
124
+ "mixed-emotion-suggestion-metadata": {
125
+ "agent": null,
126
+ "score": null,
127
+ "type": null
128
+ },
129
+ "ranking": [],
130
+ "ranking-suggestion": null,
131
+ "ranking-suggestion-metadata": {
132
+ "agent": null,
133
+ "score": null,
134
+ "type": null
135
+ },
136
+ "rating": [],
137
+ "rating-suggestion": null,
138
+ "rating-suggestion-metadata": {
139
+ "agent": null,
140
+ "score": null,
141
+ "type": null
142
+ },
143
+ "sentiment": [],
144
+ "sentiment-suggestion": null,
145
+ "sentiment-suggestion-metadata": {
146
+ "agent": null,
147
+ "score": null,
148
+ "type": null
149
+ },
150
+ "text": "Absolutely infuriated by the lack of accountability in our government. It\u0027s time for real change!",
151
+ "text-annotation": [],
152
+ "text-annotation-suggestion": null,
153
+ "text-annotation-suggestion-metadata": {
154
+ "agent": null,
155
+ "score": null,
156
+ "type": null
157
+ }
158
+ }
159
+ ```
160
+
161
+ ### Data Fields
162
+
163
+ Among the dataset fields, we differentiate between the following:
164
+
165
+ * **Fields:** These are the dataset records themselves, for the moment just text fields are supported. These are the ones that will be used to provide responses to the questions.
166
+
167
+ * **text** is of type `text`.
168
+
169
+ * **Questions:** These are the questions that will be asked to the annotators. They can be of different types, such as `RatingQuestion`, `TextQuestion`, `LabelQuestion`, `MultiLabelQuestion`, and `RankingQuestion`.
170
+
171
+ * **sentiment** is of type `label_selection` with the following allowed values ['positive', 'neutral', 'negative'].
172
+ * **mixed-emotion** is of type `multi_label_selection` with the following allowed values ['joy', 'anger', 'sadness', 'fear', 'surprise', 'love'].
173
+ * **ranking** is of type `ranking` with the following allowed values ['1', '2', '3', '4', '5'].
174
+ * **rating** is of type `rating` with the following allowed values [1, 2, 3, 4, 5].
175
+ * **text-annotation** is of type `text`.
176
+
177
+ * **Suggestions:** As of Argilla 1.13.0, the suggestions have been included to provide the annotators with suggestions to ease or assist during the annotation process. Suggestions are linked to the existing questions, are always optional, and contain not just the suggestion itself, but also the metadata linked to it, if applicable.
178
+
179
+ * (optional) **sentiment-suggestion** is of type `label_selection` with the following allowed values ['positive', 'neutral', 'negative'].
180
+ * (optional) **mixed-emotion-suggestion** is of type `multi_label_selection` with the following allowed values ['joy', 'anger', 'sadness', 'fear', 'surprise', 'love'].
181
+ * (optional) **ranking-suggestion** is of type `ranking` with the following allowed values ['1', '2', '3', '4', '5'].
182
+ * (optional) **rating-suggestion** is of type `rating` with the following allowed values [1, 2, 3, 4, 5].
183
+ * (optional) **text-annotation-suggestion** is of type `text`.
184
+
185
+
186
+
187
+ Additionally, we also have two more fields that are optional and are the following:
188
+
189
+ * **metadata:** This is an optional field that can be used to provide additional information about the dataset record. This can be useful to provide additional context to the annotators, or to provide additional information about the dataset record itself. For example, you can use this to provide a link to the original source of the dataset record, or to provide additional information about the dataset record itself, such as the author, the date, or the source. The metadata is always optional, and can be potentially linked to the `metadata_properties` defined in the dataset configuration file in `argilla.yaml`.
190
+ * **external_id:** This is an optional field that can be used to provide an external ID for the dataset record. This can be useful if you want to link the dataset record to an external resource, such as a database or a file.
191
+
192
+ ### Data Splits
193
+
194
+ The dataset contains a single split, which is `train`.
195
+
196
+ ## Dataset Creation
197
+
198
+ ### Curation Rationale
199
+
200
+ [More Information Needed]
201
+
202
+ ### Source Data
203
+
204
+ #### Initial Data Collection and Normalization
205
+
206
+ [More Information Needed]
207
+
208
+ #### Who are the source language producers?
209
+
210
+ [More Information Needed]
211
+
212
+ ### Annotations
213
+
214
+ #### Annotation guidelines
215
+
216
+ Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise.
217
+
218
+ #### Annotation process
219
+
220
+ [More Information Needed]
221
+
222
+ #### Who are the annotators?
223
+
224
+ [More Information Needed]
225
+
226
+ ### Personal and Sensitive Information
227
+
228
+ [More Information Needed]
229
+
230
+ ## Considerations for Using the Data
231
+
232
+ ### Social Impact of Dataset
233
+
234
+ [More Information Needed]
235
+
236
+ ### Discussion of Biases
237
+
238
+ [More Information Needed]
239
+
240
+ ### Other Known Limitations
241
+
242
+ [More Information Needed]
243
+
244
+ ## Additional Information
245
+
246
+ ### Dataset Curators
247
+
248
+ [More Information Needed]
249
+
250
+ ### Licensing Information
251
+
252
+ [More Information Needed]
253
+
254
+ ### Citation Information
255
+
256
+ [More Information Needed]
257
+
258
+ ### Contributions
259
+
260
+ [More Information Needed]