leonmakise
commited on
Commit
•
18ac00c
1
Parent(s):
90a4a3e
Upload 4 files
Browse files
HyperSIGMA_super-resolution/crop_image.m
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
function [out] = crop_image(img, patch_size, stride, factor, file_name)
|
2 |
+
|
3 |
+
% Normalization for CAVE dataset
|
4 |
+
%img = double(img)./65535;
|
5 |
+
% Normalization for Pavia Center dataset
|
6 |
+
%img = double(img)./8000;
|
7 |
+
% Normalization for Chikusei dataset
|
8 |
+
img = double(img);
|
9 |
+
|
10 |
+
[H, W, C] = size(img);
|
11 |
+
p = patch_size;
|
12 |
+
pat_col_num = 1:stride:(H - p + 1);
|
13 |
+
pat_row_num = 1:stride:(W - p + 1);
|
14 |
+
total_num = length(pat_col_num) * length(pat_row_num);
|
15 |
+
index = 1;
|
16 |
+
|
17 |
+
% crop a single patch from whole image
|
18 |
+
for i=1:length(pat_col_num)
|
19 |
+
for j = 1:length(pat_row_num)
|
20 |
+
up = pat_col_num(i);
|
21 |
+
down = up + p - 1;
|
22 |
+
left = pat_row_num(j);
|
23 |
+
right = left + p - 1;
|
24 |
+
gt = img(up:down, left:right, :);
|
25 |
+
ms = single(imresize(gt, factor));
|
26 |
+
ms_bicubic = single(imresize(ms, 1/factor));
|
27 |
+
gt = single(gt);
|
28 |
+
file_path = strcat('/Users/miaoyuchun/Desktop/superx2/dataset/Houston_x2/trains_solely/block_', file_name, '_', num2str(index), '.mat');
|
29 |
+
% file_path = strcat('./dataset/Pavia_x2/trains/block_', file_name, '_', num2str(index), '.mat');
|
30 |
+
% file_path = strcat('./dataset/Chikusei_x2/trains/block_', file_name, '_', num2str(index), '.mat');
|
31 |
+
% file_path = strcat('./dataset/Chikusei_x8/trains/block_', file_name, '_', num2str(index), '.mat');
|
32 |
+
save(file_path,'gt','ms','ms_bicubic','-v6');
|
33 |
+
index = index + 1;
|
34 |
+
end
|
35 |
+
end
|
36 |
+
out = total_num;
|
37 |
+
end
|
38 |
+
|
39 |
+
|
HyperSIGMA_super-resolution/generate_Houston.m
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
%% This is a demo code to show how to generate training and testing samples from the HSI %%
|
2 |
+
clc
|
3 |
+
clear
|
4 |
+
close all
|
5 |
+
|
6 |
+
addpath('include');
|
7 |
+
|
8 |
+
%% Step 1: generate the training and testing images from the original HSI
|
9 |
+
load('Houston2018.mat');%% Please down the Chikusei dataset (mat format) from https://www.sal.t.u-tokyo.ac.jp/hyperdata/
|
10 |
+
%% center crop this image to size 4172 x 1202
|
11 |
+
img = Houston2018;
|
12 |
+
clear Houston2018;
|
13 |
+
% normalization
|
14 |
+
img = single(img);
|
15 |
+
img = img ./ max(max(max(img)));
|
16 |
+
|
17 |
+
%% select first column as test images
|
18 |
+
[H, W, C] = size(img);
|
19 |
+
test_img_size = 256;
|
20 |
+
test_pic_num = floor(W / test_img_size);
|
21 |
+
mkdir test_Houston;
|
22 |
+
for i = 1:test_pic_num
|
23 |
+
left = (i - 1) * test_img_size + 1;
|
24 |
+
right = left + test_img_size - 1;
|
25 |
+
test = img(1:test_img_size,left:right,:);
|
26 |
+
save(strcat('./test_Houston/Houston_test_', int2str(i), '.mat'),'test');
|
27 |
+
end
|
28 |
+
|
29 |
+
%% the rest bottom for training
|
30 |
+
mkdir ('train_Houston');
|
31 |
+
img = img((test_img_size+1):end,:,:);
|
32 |
+
save('./train_Houston/Houston_train.mat', 'img');
|
33 |
+
|
34 |
+
%% Step 2: generate the testing images used in mains.py
|
35 |
+
generate_test_data;
|
36 |
+
|
37 |
+
%% Step 3: generate the training samples (patches) cropped from the training images
|
38 |
+
generate_train_data;
|
39 |
+
|
40 |
+
%% Step 4: Please manually remove 10% of the samples to the folder of evals
|
HyperSIGMA_super-resolution/generate_test_data.m
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fileFolder=fullfile('/Users/miaoyuchun/Desktop/superx2/test_Houston/');
|
2 |
+
dirOutput=dir(fullfile(fileFolder,'*.mat'));
|
3 |
+
fileNames={dirOutput.name};
|
4 |
+
factor = 0.5;
|
5 |
+
img_size = 256;
|
6 |
+
bands = 48;
|
7 |
+
gt = zeros(numel(fileNames),img_size,img_size,bands);
|
8 |
+
ms = zeros(numel(fileNames),img_size*factor,img_size*factor,bands);
|
9 |
+
ms_bicubic = zeros(numel(fileNames),img_size,img_size,bands);
|
10 |
+
% testFolder=fullfile('.\Cave\test\');
|
11 |
+
%testOutput=dir(fullfile(testFolder,'*.mat'));
|
12 |
+
%testNames={testOutput.name};
|
13 |
+
|
14 |
+
% cd test_Chikusei;
|
15 |
+
% cd test_Houston;
|
16 |
+
cd test_Houston;
|
17 |
+
for i = 1:numel(fileNames)
|
18 |
+
load(fileNames{i},'test');
|
19 |
+
img_ms = single(imresize(test, factor));
|
20 |
+
gt(i,:,:,:) = test;
|
21 |
+
ms(i,:,:,:) = img_ms;
|
22 |
+
ms_bicubic(i,:,:,:) = single(imresize(img_ms, 1/factor));
|
23 |
+
end
|
24 |
+
|
25 |
+
cd ..;
|
26 |
+
gt = single(gt);
|
27 |
+
ms = single(ms);
|
28 |
+
ms_bicubic = single(ms_bicubic);
|
29 |
+
save('/Users/miaoyuchun/Desktop/superx2/dataset/Houston_x2/Houston_x2.mat','gt','ms','ms_bicubic');
|
30 |
+
|
HyperSIGMA_super-resolution/generate_train_data.m
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
% Convert HS dataset to patches
|
2 |
+
|
3 |
+
% List all '.mat' file in folder
|
4 |
+
% file_folder=fullfile('.\train');
|
5 |
+
file_folder=fullfile('/Users/miaoyuchun/Desktop/superx2/train_Houston');
|
6 |
+
file_list=dir(fullfile(file_folder,'*.mat'));
|
7 |
+
file_names={file_list.name};
|
8 |
+
|
9 |
+
% store cropped images in folders
|
10 |
+
for i = 1:1:numel(file_names)
|
11 |
+
name = file_names{i};
|
12 |
+
name = name(1:end-4);
|
13 |
+
load(strcat('/Users/miaoyuchun/Desktop/superx2/train_Houston/',file_names{i}));
|
14 |
+
%crop_image(img, 256, 128, 0.125, name);
|
15 |
+
crop_image(img, 128, 32, 0.5, name);
|
16 |
+
%crop_image(img, 128, 32, 0.125, name);
|
17 |
+
% crop(img, 512, 512, 0.5, name);
|
18 |
+
%crop_image(img, 128, 64, 0.25, name);
|
19 |
+
end
|