harpreetsahota commited on
Commit
6ec5288
1 Parent(s): 39566d4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -121
README.md CHANGED
@@ -46,7 +46,7 @@ dataset_summary: '
46
 
47
  # Note: other available arguments include ''max_samples'', etc
48
 
49
- dataset = fouh.load_from_hub("harpreetsahota/LVIS")
50
 
51
 
52
  # Launch the App
@@ -59,15 +59,13 @@ dataset_summary: '
59
  ---
60
 
61
  # Dataset Card for LVIS-35k
62
-
63
- <!-- Provide a quick summary of the dataset. -->
64
-
65
-
66
-
67
 
68
 
69
  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000 samples.
70
 
 
 
71
  ## Installation
72
 
73
  If you haven't already, install FiftyOne:
@@ -84,7 +82,7 @@ import fiftyone.utils.huggingface as fouh
84
 
85
  # Load the dataset
86
  # Note: other available arguments include 'max_samples', etc
87
- dataset = fouh.load_from_hub("harpreetsahota/LVIS")
88
 
89
  # Launch the App
90
  session = fo.launch_app(dataset)
@@ -95,130 +93,40 @@ session = fo.launch_app(dataset)
95
 
96
  ### Dataset Description
97
 
98
- <!-- Provide a longer summary of what this dataset is. -->
99
-
100
-
101
-
102
- - **Curated by:** [More Information Needed]
103
- - **Funded by [optional]:** [More Information Needed]
104
- - **Shared by [optional]:** [More Information Needed]
105
- - **Language(s) (NLP):** en
106
- - **License:** [More Information Needed]
107
-
108
- ### Dataset Sources [optional]
109
-
110
- <!-- Provide the basic links for the dataset. -->
111
-
112
- - **Repository:** [More Information Needed]
113
- - **Paper [optional]:** [More Information Needed]
114
- - **Demo [optional]:** [More Information Needed]
115
-
116
- ## Uses
117
-
118
- <!-- Address questions around how the dataset is intended to be used. -->
119
-
120
- ### Direct Use
121
-
122
- <!-- This section describes suitable use cases for the dataset. -->
123
-
124
- [More Information Needed]
125
-
126
- ### Out-of-Scope Use
127
-
128
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
129
-
130
- [More Information Needed]
131
-
132
- ## Dataset Structure
133
-
134
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
135
-
136
- [More Information Needed]
137
-
138
- ## Dataset Creation
139
-
140
- ### Curation Rationale
141
-
142
- <!-- Motivation for the creation of this dataset. -->
143
-
144
- [More Information Needed]
145
-
146
- ### Source Data
147
-
148
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
149
 
150
- #### Data Collection and Processing
151
 
152
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
153
 
154
- [More Information Needed]
155
 
156
- #### Who are the source data producers?
157
 
158
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
159
 
160
- [More Information Needed]
161
-
162
- ### Annotations [optional]
163
-
164
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
165
-
166
- #### Annotation process
167
-
168
- <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
169
-
170
- [More Information Needed]
171
-
172
- #### Who are the annotators?
173
-
174
- <!-- This section describes the people or systems who created the annotations. -->
175
-
176
- [More Information Needed]
177
-
178
- #### Personal and Sensitive Information
179
-
180
- <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
181
-
182
- [More Information Needed]
183
-
184
- ## Bias, Risks, and Limitations
185
-
186
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
187
-
188
- [More Information Needed]
189
-
190
- ### Recommendations
191
 
192
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
193
 
194
- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
 
 
195
 
196
- ## Citation [optional]
197
 
198
- <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
199
 
200
  **BibTeX:**
201
 
202
- [More Information Needed]
203
-
204
- **APA:**
205
-
206
- [More Information Needed]
207
-
208
- ## Glossary [optional]
209
-
210
- <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
211
-
212
- [More Information Needed]
213
-
214
- ## More Information [optional]
215
-
216
- [More Information Needed]
217
-
218
- ## Dataset Card Authors [optional]
219
-
220
- [More Information Needed]
221
-
222
- ## Dataset Card Contact
223
-
224
- [More Information Needed]
 
46
 
47
  # Note: other available arguments include ''max_samples'', etc
48
 
49
+ dataset = fouh.load_from_hub("Voxel51/LVIS")
50
 
51
 
52
  # Launch the App
 
59
  ---
60
 
61
  # Dataset Card for LVIS-35k
62
+ ![image](LVIS.gif)
 
 
 
 
63
 
64
 
65
  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000 samples.
66
 
67
+ **NOTE:** This is only a 35k sample subset of the full dataset. The notebook recipe for creating this, and the full, dataset can be found [here](https://colab.research.google.com/drive/1SmdZPWtLhNis_cCRnO9WKKZQ9OaP_C_d)
68
+
69
  ## Installation
70
 
71
  If you haven't already, install FiftyOne:
 
82
 
83
  # Load the dataset
84
  # Note: other available arguments include 'max_samples', etc
85
+ dataset = fouh.load_from_hub("Voxel51/LVIS")
86
 
87
  # Launch the App
88
  session = fo.launch_app(dataset)
 
93
 
94
  ### Dataset Description
95
 
96
+ LVIS (pronounced 'el-vis') is a dataset for large vocabulary instance segmentation, introduced by researchers from Facebook AI.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
+ - It contains annotations for over 1000 object categories across 164k images. The full dataset is planned to have ~2 million high-quality instance segmentation masks.
99
 
100
+ - The categories in LVIS follow a natural long-tail distribution, with a few common categories and many rare ones with few training examples. This long tail poses a challenge for current state-of-the-art object detection methods which struggle with low-sample categories.
101
 
102
+ - The vocabulary was constructed iteratively, starting from 8.8k concrete noun synsets in WordNet and filtering down to the final set[4].
103
 
104
+ - LVIS can be used for instance segmentation, semantic segmentation, and object detection tasks. The dataset aims to focus the research community on the open challenge of long-tail object recognition.
105
 
106
+ In summary, LVIS is a large-scale, high-quality dataset that targets the difficult problem of learning segmentation models for various object categories, including many rare ones. It is freely available for research use.
107
 
108
+ - **Curated by:** Agrim Gupta, Piotr Dollár, Ross Girshick
109
+ - **Funded by:** Facebook AI Research (FAIR)
110
+ - **Shared by:** [Harpreet Sahota](twitter.com/datascienceharp), Hacker-in-Residence at Voxel51
111
+ - **Language(s) (NLP):** en
112
+ - **License:** [Custom License](https://github.com/lvis-dataset/lvis-api/blob/master/LICENSE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
114
+ ### Dataset Sources [optional]
115
 
116
+ - **Website:** https://www.lvisdataset.org/
117
+ - **Repository:** https://github.com/lvis-dataset/lvis-api
118
+ - **Paper:** https://arxiv.org/abs/1908.03195
119
 
120
+ ## Citation
121
 
 
122
 
123
  **BibTeX:**
124
 
125
+ ```bibtex
126
+ @inproceedings{gupta2019lvis,
127
+ title={{LVIS}: A Dataset for Large Vocabulary Instance Segmentation},
128
+ author={Gupta, Agrim and Dollar, Piotr and Girshick, Ross},
129
+ booktitle={Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition},
130
+ year={2019}
131
+ }
132
+ ```