File size: 4,799 Bytes
8caa738 1e61aa0 284d39a 1e61aa0 8caa738 1e61aa0 8caa738 bd3d449 1e61aa0 344b171 1e61aa0 a946c94 344b171 1e61aa0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
---
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
dataset_info:
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: annotator_labels
sequence: string
- name: genre
dtype: string
- name: gold_label
dtype: string
- name: pairID
dtype: string
splits:
- name: train
num_bytes: 92877120
num_examples: 380800
- name: validation
num_bytes: 5903876
num_examples: 19392
- name: test
num_bytes: 5321727
num_examples: 19040
download_size: 58511174
dataset_size: 104102723
license: creativeml-openrail-m
task_categories:
- sentence-similarity
language:
- nl
pretty_name: Dutch MultiNLI(MM) using MariaNMT
size_categories:
- 100K<n<1M
---
```
---
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
dataset_info:
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: annotator_labels
sequence: string
- name: genre
dtype: string
- name: gold_label
dtype: string
- name: pairID
dtype: string
splits:
- name: train
num_bytes: 92877120
num_examples: 380800
- name: validation
num_bytes: 5903876
num_examples: 19392
- name: test
num_bytes: 5321727
num_examples: 19040
download_size: 58511174
dataset_size: 104102723
---
```
# Dataset Card for "MultiNLI_Dutch_translated_with_Marianmt"
Translation of the **English** corpus [Multi-Genre Natural Language Inference (MultiNLI) corpus ](https://cims.nyu.edu/~sbowman/multinli/),
specifically the *mismatched version*, to **Dutch** using an [Maria NMT model](https://marian-nmt.github.io/),
trained by [Helsinki NLP](https://huggingface.co/Helsinki-NLP/opus-mt-en-nl).
Note, for reference: Maria NMT is based on [BART](https://huggingface.co/docs/transformers/model_doc/bart), described [here](https://arxiv.org/abs/1910.13461).
A complete description of the dataset is given [here](https://cims.nyu.edu/~sbowman/multinli/),
and is available on [HuggingFace](https://huggingface.co/datasets/multi_nli_mismatch).
# Attribution
If you use this dataset please use the following to credit the creators of MultiNLI:
```citation
@InProceedings{N18-1101,
author = "Williams, Adina
and Nangia, Nikita
and Bowman, Samuel",
title = "A Broad-Coverage Challenge Corpus for
Sentence Understanding through Inference",
booktitle = "Proceedings of the 2018 Conference of
the North American Chapter of the
Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers)",
year = "2018",
publisher = "Association for Computational Linguistics",
pages = "1112--1122",
location = "New Orleans, Louisiana",
url = "http://aclweb.org/anthology/N18-1101"
}
```
The creators of the OPUS-MT models:
```
@InProceedings{TiedemannThottingal:EAMT2020,
author = {J{\"o}rg Tiedemann and Santhosh Thottingal},
title = {{OPUS-MT} — {B}uilding open translation services for the {W}orld},
booktitle = {Proceedings of the 22nd Annual Conferenec of the European Association for Machine Translation (EAMT)},
year = {2020},
address = {Lisbon, Portugal}
}
```
and
```
@misc {van_es_2023,
author = { {Bram van Es} },
title = { MultiNLI_Dutch_translated_with_Marianmt (Revision 284d39a) },
year = 2023,
url = { https://huggingface.co/datasets/UMCU/MultiNLI_Dutch_translated_with_Marianmt },
doi = { 10.57967/hf/1417 },
publisher = { Hugging Face }
}
```
# License
For both the Maria NMT model and the original [Helsinki NLP](https://twitter.com/HelsinkiNLP) [Opus MT model](https://huggingface.co/Helsinki-NLP)
we did **not** find a license, if this was in error please let us know and we will add the appropriate licensing promptly.
We adopt the licensing of the MultiNLI corpus, which is stated as follows in the accompanying publication:
*The majority of the
corpus is released under the OANC’s license,
which allows all content to be freely used, modified, and shared under permissive terms. The data
in the FICTION section falls under several permissive licenses; Seven Swords is available under
a Creative Commons Share-Alike 3.0 Unported
License, and with the explicit permission of the
author, Living History and Password Incorrect are
available under Creative Commons Attribution
3.0 Unported Licenses; the remaining works of
fiction are in the public domain in the United
States (but may be licensed differently elsewhere).* |