Datasets:
Tasks:
Question Answering
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
table-question-answering
License:
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""The WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.""" | |
import os | |
import datasets | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@inproceedings{pasupat-liang-2015-compositional, | |
title = "Compositional Semantic Parsing on Semi-Structured Tables", | |
author = "Pasupat, Panupong and Liang, Percy", | |
booktitle = "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", | |
month = jul, | |
year = "2015", | |
address = "Beijing, China", | |
publisher = "Association for Computational Linguistics", | |
url = "https://aclanthology.org/P15-1142", | |
doi = "10.3115/v1/P15-1142", | |
pages = "1470--1480", | |
} | |
""" | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
This WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables. | |
""" | |
_HOMEPAGE = "https://nlp.stanford.edu/software/sempre/wikitable" | |
_LICENSE = "Creative Commons Attribution Share Alike 4.0 International" | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_DATA_URL = ( | |
"https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" | |
) | |
class WikiTableQuestions(datasets.GeneratorBasedBuilder): | |
"""WikiTableQuestions: a large-scale dataset for the task of question answering on semi-structured tables.""" | |
VERSION = datasets.Version("1.0.2") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="random-split-1", | |
version=VERSION, | |
description="The random-split-1-train/dev.tsv and pristine-unseen-tables.tsv", | |
), | |
datasets.BuilderConfig( | |
name="random-split-2", | |
version=VERSION, | |
description="The random-split-2-train/dev.tsv and pristine-unseen-tables.tsv", | |
), | |
datasets.BuilderConfig( | |
name="random-split-3", | |
version=VERSION, | |
description="The random-split-3-train/dev.tsv and pristine-unseen-tables.tsv", | |
), | |
datasets.BuilderConfig( | |
name="random-split-4", | |
version=VERSION, | |
description="The random-split-4-train/dev.tsv and pristine-unseen-tables.tsv", | |
), | |
datasets.BuilderConfig( | |
name="random-split-5", | |
version=VERSION, | |
description="The random-split-5-train/dev.tsv and pristine-unseen-tables.tsv", | |
), | |
] | |
DEFAULT_CONFIG_NAME = ( | |
"random-split-1" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
) | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"answers": datasets.features.Sequence(datasets.Value("string")), | |
"table": { | |
"header": datasets.features.Sequence(datasets.Value("string")), | |
"rows": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))), | |
"name": datasets.Value("string"), | |
}, | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
train_file = "{}-train.tsv".format(self.config.name) | |
dev_file = "{}-dev.tsv".format(self.config.name) | |
test_file = "pristine-unseen-tables.tsv" | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
urls = _DATA_URL | |
root_dir = os.path.join(dl_manager.download_and_extract(urls), "WikiTableQuestions") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"main_filepath": os.path.join(root_dir, "data", train_file), "root_dir": root_dir}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"main_filepath": os.path.join(root_dir, "data", test_file), "root_dir": root_dir}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"main_filepath": os.path.join(root_dir, "data", dev_file), "root_dir": root_dir}, | |
), | |
] | |
def _read_table_from_file(self, table_name: str, root_dir: str): | |
def _extract_table_content(_line: str): | |
_vals = [_.replace("\n", " ").strip() for _ in _line.strip("\n").split("\t")] | |
return _vals | |
rows = [] | |
# assert ".csv" in _wtq_table_name | |
# use the normalized table file | |
table_name = table_name.replace(".csv", ".tsv") | |
with open(os.path.join(root_dir, table_name), "r", encoding="utf8") as table_f: | |
table_lines = table_f.readlines() | |
# the first line is header | |
header = _extract_table_content(table_lines[0]) | |
for line in table_lines[1:]: | |
rows.append(_extract_table_content(line)) | |
return {"header": header, "rows": rows, "name": table_name} | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, main_filepath, root_dir): | |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
with open(main_filepath, encoding="utf-8") as f: | |
# skip the first line since it is the tsv header | |
next(f) | |
for idx, line in enumerate(f): | |
example_id, question, table_name, answer = line.strip("\n").split("\t") | |
answer = answer.split("|") | |
# must contain rows and header keys | |
table_content = self._read_table_from_file(table_name, root_dir) | |
yield idx, {"id": example_id, "question": question, "answers": answer, "table": table_content} | |