Datasets:

Languages:
Vietnamese
ArXiv:
License:
File size: 4,772 Bytes
d14fbc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3bdc99
d14fbc6
 
 
e3bdc99
 
d14fbc6
 
 
 
e3bdc99
d14fbc6
e3bdc99
d14fbc6
e3bdc99
d14fbc6
e3bdc99
 
 
d14fbc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

---
license: cc-by-nc-sa-4.0
language: 
- vie
pretty_name: Vilexnorm
task_categories: 
- multilexnorm
tags: 
- multilexnorm
---

The ViLexNorm corpus is a collection of comment pairs in Vietnamese, designed for the task of lexical normalization. The corpus contains 10,467 comment pairs, carefully curated and annotated for lexical normalization purposes.
These comment pairs are partitioned into three subsets: training, development, and test, distributed in an 8:1:1 ratio.


## Languages

vie

## Supported Tasks

Multilexnorm

## Dataset Usage
### Using `datasets` library
```
from datasets import load_dataset
dset = datasets.load_dataset("SEACrowd/vilexnorm", trust_remote_code=True)
```
### Using `seacrowd` library
```import seacrowd as sc
# Load the dataset using the default config
dset = sc.load_dataset("vilexnorm", schema="seacrowd")
# Check all available subsets (config names) of the dataset
print(sc.available_config_names("vilexnorm"))
# Load the dataset using a specific config
dset = sc.load_dataset_by_config_name(config_name="<config_name>")
```

More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).


## Dataset Homepage

[https://github.com/ngxtnhi/ViLexNorm](https://github.com/ngxtnhi/ViLexNorm)

## Dataset Version

Source: 1.0.0. SEACrowd: 2024.06.20.

## Dataset License

Creative Commons Attribution Non Commercial Share Alike 4.0 (cc-by-nc-sa-4.0)

## Citation

If you are using the **Vilexnorm** dataloader in your work, please cite the following:
```
@inproceedings{nguyen-etal-2024-vilexnorm,
    title = "{V}i{L}ex{N}orm: A Lexical Normalization Corpus for {V}ietnamese Social Media Text",
    author = "Nguyen, Thanh-Nhi  and
      Le, Thanh-Phong  and
      Nguyen, Kiet",
    editor = "Graham, Yvette  and
      Purver, Matthew",
    booktitle = "Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = mar,
    year = "2024",
    address = "St. Julian{'}s, Malta",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.eacl-long.85",
    pages = "1421--1437",
    abstract = "Lexical normalization, a fundamental task in Natural Language Processing (NLP), involves the transformation of words into their canonical forms. This process has been proven to benefit various downstream NLP tasks greatly.
    In this work, we introduce Vietnamese Lexical Normalization (ViLexNorm), the first-ever corpus developed for the Vietnamese lexical normalization task. The corpus comprises over 10,000 pairs of sentences meticulously annotated
    by human annotators, sourced from public comments on Vietnam{'}s most popular social media platforms. Various methods were used to evaluate our corpus, and the best-performing system achieved a result of 57.74% using
    the Error Reduction Rate (ERR) metric (van der Goot, 2019a) with the Leave-As-Is (LAI) baseline. For extrinsic evaluation, employing the model trained on ViLexNorm demonstrates the positive impact of the Vietnamese lexical normalization task
    on other NLP tasks. Our corpus is publicly available exclusively for research purposes.",
}


@article{lovenia2024seacrowd,
    title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages}, 
    author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
    year={2024},
    eprint={2406.10118},
    journal={arXiv preprint arXiv: 2406.10118}
}

```