|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import csv |
|
import os |
|
import re |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
from translate.storage.tmx import tmxfile |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{anastasopoulos-etal-2020-tico, |
|
title = "{TICO}-19: the Translation Initiative for {CO}vid-19", |
|
author = {Anastasopoulos, Antonios and |
|
Cattelan, Alessandro and |
|
Dou, Zi-Yi and |
|
Federico, Marcello and |
|
Federmann, Christian and |
|
Genzel, Dmitriy and |
|
Guzm{\'a}n, Franscisco and |
|
Hu, Junjie and |
|
Hughes, Macduff and |
|
Koehn, Philipp and |
|
Lazar, Rosie and |
|
Lewis, Will and |
|
Neubig, Graham and |
|
Niu, Mengmeng and |
|
{\"O}ktem, Alp and |
|
Paquin, Eric and |
|
Tang, Grace and |
|
Tur, Sylwia}, |
|
booktitle = "Proceedings of the 1st Workshop on {NLP} for {COVID}-19 (Part 2) at {EMNLP} 2020", |
|
month = dec, |
|
year = "2020", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2020.nlpcovid19-2.5", |
|
doi = "10.18653/v1/2020.nlpcovid19-2.5", |
|
} |
|
""" |
|
|
|
|
|
_LANGUAGES = ["ind", "ara", "spa", "fra", "hin", "por", "rus", "zho", "eng", "khm", "zlm", "mya", "tgl", "tam"] |
|
_LOCAL = False |
|
_SUPPORTED_LANG_PAIRS = [ |
|
("ind", "ara"), |
|
("ind", "spa"), |
|
("ind", "fra"), |
|
("ind", "hin"), |
|
("ind", "por"), |
|
("ind", "rus"), |
|
("ind", "zho"), |
|
("ind", "eng"), |
|
("ara", "ind"), |
|
("spa", "ind"), |
|
("fra", "ind"), |
|
("hin", "ind"), |
|
("por", "ind"), |
|
("rus", "ind"), |
|
("zho", "ind"), |
|
("eng", "ind"), |
|
("khm", "eng"), |
|
("eng", "khm"), |
|
("mya", "eng"), |
|
("eng", "mya"), |
|
("zlm", "eng"), |
|
("eng", "zlm"), |
|
("tgl", "eng"), |
|
("eng", "tgl"), |
|
("tam", "eng"), |
|
("eng", "tam"), |
|
] |
|
|
|
_LANG_CODE_MAP = {"ind": "id", "ara": "ar", "spa": "es-LA", "fra": "fr", "hin": "hi", "por": "pt-BR", "rus": "ru", "zho": "zh", "eng": "en", "khm": "km", "zlm": "ms", "mya": "my", "tgl": "tl", "tam": "ta"} |
|
|
|
_DEVTEST_LANG_PAIRS = [_LANG_CODE_MAP[source_lang] + "-" + _LANG_CODE_MAP[target_lang] for (source_lang, target_lang) in _SUPPORTED_LANG_PAIRS if (source_lang == "eng" or target_lang == "eng")] |
|
|
|
_DATASETNAME = "tico_19" |
|
|
|
_DESCRIPTION = """\ |
|
TICO-19 (Translation Initiative for COVID-19) is sampled from a variety of public sources containing |
|
COVID-19 related content, representing different domains (e.g., news, wiki articles, and others). TICO-19 |
|
includes 30 documents (3071 sentences, 69.7k words) translated from English into 36 languages: Amharic, |
|
Arabic (Modern Standard), Bengali, Chinese (Simplified), Dari, Dinka, Farsi, French (European), Hausa, |
|
Hindi, Indonesian, Kanuri, Khmer (Central), Kinyarwanda, Kurdish Kurmanji, Kurdish Sorani, Lingala, |
|
Luganda, Malay, Marathi, Myanmar, Nepali, Nigerian Fulfulde, Nuer, Oromo, Pashto, Portuguese (Brazilian), |
|
Russian, Somali, Spanish (Latin American), Swahili, Congolese Swahili, Tagalog, Tamil, Tigrinya, Urdu, Zulu. |
|
""" |
|
|
|
_HOMEPAGE = "https://tico-19.github.io" |
|
|
|
_LICENSE = "CC0" |
|
|
|
_URLS = {"evaluation": "https://tico-19.github.io/data/tico19-testset.zip", "all": "https://tico-19.github.io/data/TM/all.{lang_pairs}.tmx.zip"} |
|
|
|
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
def seacrowd_config_constructor(lang_source, lang_target, schema, version): |
|
"""Construct SEACrowdConfig with tico_19_{lang_source}_{lang_target}_{schema} as the name format""" |
|
if schema != "source" and schema != "seacrowd_t2t": |
|
raise ValueError(f"Invalid schema: {schema}") |
|
|
|
if lang_source == "" and lang_target == "": |
|
return SEACrowdConfig( |
|
name="tico_19_{schema}".format(schema=schema), |
|
version=datasets.Version(version), |
|
description="tico_19 {schema} schema for default language pair (eng-ind)".format(schema=schema), |
|
schema=schema, |
|
subset_id="tico_19", |
|
) |
|
else: |
|
return SEACrowdConfig( |
|
name="tico_19_{src}_{tgt}_{schema}".format(src=lang_source, tgt=lang_target, schema=schema), |
|
version=datasets.Version(version), |
|
description="tico_19 {schema} schema for {src}-{tgt} language pair".format(src=lang_source, tgt=lang_target, schema=schema), |
|
schema=schema, |
|
subset_id="tico_19", |
|
) |
|
|
|
|
|
class Tico19(datasets.GeneratorBasedBuilder): |
|
"""TICO-19 is MT dataset sampled from a variety of public sources containing COVID-19 related content""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [seacrowd_config_constructor(src, tgt, schema, version) for src, tgt in [("", "")] + _SUPPORTED_LANG_PAIRS for schema, version in zip(["source", "seacrowd_t2t"], [_SOURCE_VERSION, _SEACROWD_VERSION])] |
|
|
|
DEFAULT_CONFIG_NAME = "tico_19_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"sourceLang": datasets.Value("string"), |
|
"targetLang": datasets.Value("string"), |
|
"sourceString": datasets.Value("string"), |
|
"targetString": datasets.Value("string"), |
|
"stringID": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
"license": datasets.Value("string"), |
|
"translatorId": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
try: |
|
lang_pairs_config = re.search("tico_19_(.+?)_(source|seacrowd_t2t)", self.config.name).group(1) |
|
lang_src, lang_tgt = lang_pairs_config.split("_") |
|
except AttributeError: |
|
lang_src, lang_tgt = "eng", "ind" |
|
|
|
lang_pairs = _LANG_CODE_MAP[lang_src] + "-" + _LANG_CODE_MAP[lang_tgt] |
|
|
|
|
|
if lang_pairs in set(_DEVTEST_LANG_PAIRS): |
|
lang_sea = _LANG_CODE_MAP[lang_tgt] if lang_src == "eng" else _LANG_CODE_MAP[lang_src] |
|
|
|
data_dir = dl_manager.download_and_extract(_URLS["evaluation"]) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "tico19-testset", "test", f"test.en-{lang_sea}.tsv"), "lang_source": lang_src, "lang_target": lang_tgt}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "tico19-testset", "dev", f"dev.en-{lang_sea}.tsv"), "lang_source": lang_src, "lang_target": lang_tgt}, |
|
), |
|
] |
|
else: |
|
data_dir = dl_manager.download_and_extract(_URLS["all"].format(lang_pairs=lang_pairs)) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": os.path.join(data_dir, f"all.{lang_pairs}.tmx"), "lang_source": lang_src, "lang_target": lang_tgt}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, lang_source: str, lang_target: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if self.config.schema == "source": |
|
|
|
if f"{_LANG_CODE_MAP[lang_source]}-{_LANG_CODE_MAP[lang_target]}" in set(_DEVTEST_LANG_PAIRS): |
|
with open(filepath, encoding="utf-8") as f: |
|
reader = csv.reader(f, delimiter="\t", quotechar='"') |
|
for id_, row in enumerate(reader): |
|
if id_ == 0: |
|
continue |
|
if lang_source == "eng": |
|
source_lang = row[0] |
|
target_lang = row[1] |
|
source_string = row[2] |
|
target_string = row[3] |
|
else: |
|
source_lang = row[1] |
|
target_lang = row[0] |
|
source_string = row[3] |
|
target_string = row[2] |
|
yield id_, { |
|
"sourceLang": source_lang, |
|
"targetLang": target_lang, |
|
"sourceString": source_string, |
|
"targetString": target_string, |
|
"stringID": row[4], |
|
"url": row[5], |
|
"license": row[6], |
|
"translatorId": row[7], |
|
} |
|
|
|
|
|
else: |
|
with open(filepath, "rb") as f: |
|
tmx_file = tmxfile(f) |
|
|
|
for id_, node in enumerate(tmx_file.unit_iter()): |
|
try: |
|
url = [text for text in node.xmlelement.itertext("prop")][0] |
|
except Exception: |
|
url = "" |
|
yield id_, { |
|
"sourceLang": _LANG_CODE_MAP[lang_source], |
|
"targetLang": _LANG_CODE_MAP[lang_target], |
|
"sourceString": node.source, |
|
"targetString": node.target, |
|
"stringID": node.getid(), |
|
"url": url, |
|
"license": "", |
|
"translatorId": "", |
|
} |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
if f"{_LANG_CODE_MAP[lang_source]}-{_LANG_CODE_MAP[lang_target]}" in set(_DEVTEST_LANG_PAIRS): |
|
with open(filepath, encoding="utf-8") as f: |
|
reader = csv.reader(f, delimiter="\t", quotechar='"') |
|
for id_, row in enumerate(reader): |
|
if id_ == 0: |
|
continue |
|
if lang_source == "eng": |
|
source_string = row[2] |
|
target_string = row[3] |
|
else: |
|
source_string = row[3] |
|
target_string = row[2] |
|
yield id_, {"id": row[4], "text_1": source_string, "text_2": target_string, "text_1_name": lang_source, "text_2_name": lang_target} |
|
else: |
|
with open(filepath, "rb") as f: |
|
tmx_file = tmxfile(f) |
|
|
|
for id_, node in enumerate(tmx_file.unit_iter()): |
|
yield id_, {"id": node.getid(), "text_1": node.source, "text_2": node.target, "text_1_name": lang_source, "text_2_name": lang_target} |
|
|