|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{cruz2021exploiting, |
|
title={Exploiting news article structure for automatic corpus generation of entailment datasets}, |
|
author={Cruz, Jan Christian Blaise and Resabal, Jose Kristian and Lin, James and Velasco, Dan John and Cheng, Charibeth}, |
|
booktitle={PRICAI 2021: Trends in Artificial Intelligence: 18th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2021, Hanoi, Vietnam, November 8--12, 2021, Proceedings, Part II 18}, |
|
pages={86--99}, |
|
year={2021}, |
|
organization={Springer} |
|
} |
|
""" |
|
_DATASETNAME = "newsph" |
|
_LANGUAGES = ["fil", "tgl"] |
|
_DESCRIPTION = """\ |
|
Raw collection of news articles in Filipino which can be used for language modelling. |
|
""" |
|
_HOMEPAGE = "https://huggingface.co/datasets/newsph" |
|
_LICENSE = Licenses.GPL_3_0.value |
|
_LOCAL = False |
|
_URLS = "https://s3.us-east-2.amazonaws.com/blaisecruz.com/datasets/newsph/newsph.zip" |
|
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING] |
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class NewsPhDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
Raw collection of news articles in Filipino which can be used for language modelling. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="newsph_source", |
|
version=SOURCE_VERSION, |
|
description="newsph source schema", |
|
schema="source", |
|
subset_id="newsph", |
|
), |
|
SEACrowdConfig( |
|
name="newsph_seacrowd_ssp", |
|
version=SEACROWD_VERSION, |
|
description="newsph SEACrowd schema", |
|
schema="seacrowd_ssp", |
|
subset_id="newsph", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "newsph_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_ssp": |
|
features = schemas.self_supervised_pretraining.features |
|
else: |
|
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
data_dir = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "newsph", "train.txt"), |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
if self.config.schema == "source" or self.config.schema == "seacrowd_ssp": |
|
with open(filepath, encoding="utf-8") as f: |
|
for idx, row in enumerate(f): |
|
if row.strip(): |
|
yield idx, {"id": str(idx), "text": row} |
|
else: |
|
yield idx, {"id": str(idx), "text": ""} |
|
else: |
|
raise NotImplementedError |
|
|