Datasets:

Languages:
English
ArXiv:
License:
albertvillanova HF staff commited on
Commit
e5fa911
1 Parent(s): 9414746

Add license and point of contact to big_patent dataset (#4269)

Browse files

* Add license and point of contact to big_patent dataset

* Update metadata JSON

Commit from https://github.com/huggingface/datasets/commit/4a001dce0db53888a3554f2e2fcb97e6a36d6327

Files changed (3) hide show
  1. README.md +2 -2
  2. big_patent.py +3 -0
  3. dataset_infos.json +1 -1
README.md CHANGED
@@ -6,7 +6,7 @@ language_creators:
6
  languages:
7
  - en
8
  licenses:
9
- - unknown
10
  multilinguality:
11
  - monolingual
12
  size_categories:
@@ -72,7 +72,7 @@ pretty_name: Big Patent
72
  - **Repository:**
73
  - **Paper:** [BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization](https://arxiv.org/abs/1906.03741)
74
  - **Leaderboard:**
75
- - **Point of Contact:**
76
 
77
  ### Dataset Summary
78
 
 
6
  languages:
7
  - en
8
  licenses:
9
+ - cc-by-4-0
10
  multilinguality:
11
  - monolingual
12
  size_categories:
 
72
  - **Repository:**
73
  - **Paper:** [BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization](https://arxiv.org/abs/1906.03741)
74
  - **Leaderboard:**
75
+ - **Point of Contact:** [Lu Wang](mailto:[email protected])
76
 
77
  ### Dataset Summary
78
 
big_patent.py CHANGED
@@ -51,6 +51,8 @@ There are two features:
51
  - abstract: Patent abastract.
52
  """
53
 
 
 
54
  _REPO = "https://huggingface.co/datasets/big_patent/resolve/main/data"
55
  _URLS = {
56
  "train": f"{_REPO}/train.zip",
@@ -121,6 +123,7 @@ class BigPatent(datasets.GeneratorBasedBuilder):
121
  features=datasets.Features({_DOCUMENT: datasets.Value("string"), _SUMMARY: datasets.Value("string")}),
122
  supervised_keys=(_DOCUMENT, _SUMMARY),
123
  homepage=_HOMEPAGE,
 
124
  citation=_CITATION,
125
  )
126
 
 
51
  - abstract: Patent abastract.
52
  """
53
 
54
+ _LICENSE = "Creative Commons Attribution 4.0 International"
55
+
56
  _REPO = "https://huggingface.co/datasets/big_patent/resolve/main/data"
57
  _URLS = {
58
  "train": f"{_REPO}/train.zip",
 
123
  features=datasets.Features({_DOCUMENT: datasets.Value("string"), _SUMMARY: datasets.Value("string")}),
124
  supervised_keys=(_DOCUMENT, _SUMMARY),
125
  homepage=_HOMEPAGE,
126
+ license=_LICENSE,
127
  citation=_CITATION,
128
  )
129
 
dataset_infos.json CHANGED
@@ -1 +1 @@
1
- {"all": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "all", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 23363518650, "num_examples": 1207222, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 1290154487, "num_examples": 67068, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 1296234391, "num_examples": 67072, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 25949907528, "size_in_bytes": 32397129082}, "a": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "a", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3329778447, "num_examples": 174134, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 184116486, "num_examples": 9674, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 185987552, "num_examples": 9675, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 3699882485, "size_in_bytes": 10147104039}, "b": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "b", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2574594655, "num_examples": 161520, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 143029380, "num_examples": 8973, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 140741033, "num_examples": 8974, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 2858365068, "size_in_bytes": 9305586622}, "c": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "c", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2641973267, "num_examples": 101042, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 145441704, "num_examples": 5613, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 149052258, "num_examples": 5614, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 2936467229, "size_in_bytes": 9383688783}, "d": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "d", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 160467163, "num_examples": 10164, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 8667961, "num_examples": 565, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 8713720, "num_examples": 565, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 177848844, "size_in_bytes": 6625070398}, "e": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "e", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 535567259, "num_examples": 34443, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 28549964, "num_examples": 1914, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 29843613, "num_examples": 1914, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 593960836, "size_in_bytes": 7041182390}, "f": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "f", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1297707404, "num_examples": 85568, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 72367466, "num_examples": 4754, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 71676041, "num_examples": 4754, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 1441750911, "size_in_bytes": 7888972465}, "g": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "g", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5571186559, "num_examples": 258935, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 309182447, "num_examples": 14385, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 310624265, "num_examples": 14386, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 6190993271, "size_in_bytes": 12638214825}, "h": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "h", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4988365946, "num_examples": 257019, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 275293153, "num_examples": 14279, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 274505113, "num_examples": 14279, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 5538164212, "size_in_bytes": 11985385766}, "y": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "y", "version": "1.0.0", "splits": {"train": {"name": "train", "num_bytes": 2263877990, "num_examples": 124397, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 123505958, "num_examples": 6911, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 125090828, "num_examples": 6911, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 2512474776, "size_in_bytes": 8959696330}}
 
1
+ {"all": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "all", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 23363518650, "num_examples": 1207222, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 1290154487, "num_examples": 67068, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 1296234391, "num_examples": 67072, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 25949907528, "size_in_bytes": 32397129082}, "a": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "a", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3329778447, "num_examples": 174134, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 184116486, "num_examples": 9674, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 185987552, "num_examples": 9675, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 3699882485, "size_in_bytes": 10147104039}, "b": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "b", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2574594655, "num_examples": 161520, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 143029380, "num_examples": 8973, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 140741033, "num_examples": 8974, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 2858365068, "size_in_bytes": 9305586622}, "c": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "c", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2641973267, "num_examples": 101042, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 145441704, "num_examples": 5613, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 149052258, "num_examples": 5614, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 2936467229, "size_in_bytes": 9383688783}, "d": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "d", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 160467163, "num_examples": 10164, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 8667961, "num_examples": 565, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 8713720, "num_examples": 565, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 177848844, "size_in_bytes": 6625070398}, "e": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "e", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 535567259, "num_examples": 34443, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 28549964, "num_examples": 1914, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 29843613, "num_examples": 1914, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 593960836, "size_in_bytes": 7041182390}, "f": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "f", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1297707404, "num_examples": 85568, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 72367466, "num_examples": 4754, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 71676041, "num_examples": 4754, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 1441750911, "size_in_bytes": 7888972465}, "g": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "g", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5571186559, "num_examples": 258935, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 309182447, "num_examples": 14385, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 310624265, "num_examples": 14386, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 6190993271, "size_in_bytes": 12638214825}, "h": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "h", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4988365946, "num_examples": 257019, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 275293153, "num_examples": 14279, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 274505113, "num_examples": 14279, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 5538164212, "size_in_bytes": 11985385766}, "y": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "y", "version": "1.0.0", "splits": {"train": {"name": "train", "num_bytes": 2263877990, "num_examples": 124397, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 123505958, "num_examples": 6911, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 125090828, "num_examples": 6911, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 2512474776, "size_in_bytes": 8959696330}}