Commit
•
b8a7657
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +155 -0
- big_patent.py +156 -0
- dataset_infos.json +1 -0
- dummy/a/1.0.0/dummy_data.zip +3 -0
- dummy/all/1.0.0/dummy_data.zip +3 -0
- dummy/b/1.0.0/dummy_data.zip +3 -0
- dummy/c/1.0.0/dummy_data.zip +3 -0
- dummy/d/1.0.0/dummy_data.zip +3 -0
- dummy/e/1.0.0/dummy_data.zip +3 -0
- dummy/f/1.0.0/dummy_data.zip +3 -0
- dummy/g/1.0.0/dummy_data.zip +3 -0
- dummy/h/1.0.0/dummy_data.zip +3 -0
- dummy/y/1.0.0/dummy_data.zip +3 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- no-annotation
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
languages:
|
7 |
+
- en
|
8 |
+
licenses:
|
9 |
+
- unknown
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- n>1M
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- conditional-text-generation
|
18 |
+
task_ids:
|
19 |
+
- summarization
|
20 |
+
---
|
21 |
+
|
22 |
+
# Dataset Card for Big Patent
|
23 |
+
|
24 |
+
## Table of Contents
|
25 |
+
|
26 |
+
- [Dataset Card for Big Patent](#dataset-card-for-big-patent)
|
27 |
+
- [Table of Contents](#table-of-contents)
|
28 |
+
- [Dataset Description](#dataset-description)
|
29 |
+
- [Dataset Summary](#dataset-summary)
|
30 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
31 |
+
- [Languages](#languages)
|
32 |
+
- [Dataset Structure](#dataset-structure)
|
33 |
+
- [Data Instances](#data-instances)
|
34 |
+
- [Data Fields](#data-fields)
|
35 |
+
- [Data Splits](#data-splits)
|
36 |
+
- [Dataset Creation](#dataset-creation)
|
37 |
+
- [Curation Rationale](#curation-rationale)
|
38 |
+
- [Source Data](#source-data)
|
39 |
+
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
|
40 |
+
- [Who are the source language producers?](#who-are-the-source-language-producers)
|
41 |
+
- [Annotations](#annotations)
|
42 |
+
- [Annotation process](#annotation-process)
|
43 |
+
- [Who are the annotators?](#who-are-the-annotators)
|
44 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
45 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
46 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
47 |
+
- [Discussion of Biases](#discussion-of-biases)
|
48 |
+
- [Other Known Limitations](#other-known-limitations)
|
49 |
+
- [Additional Information](#additional-information)
|
50 |
+
- [Dataset Curators](#dataset-curators)
|
51 |
+
- [Licensing Information](#licensing-information)
|
52 |
+
- [Citation Information](#citation-information)
|
53 |
+
|
54 |
+
## Dataset Description
|
55 |
+
|
56 |
+
- **Homepage:[Big Patent](https://evasharma.github.io/bigpatent/)**
|
57 |
+
- **Repository:**
|
58 |
+
- **Paper:[BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization](https://arxiv.org/abs/1906.03741)**
|
59 |
+
- **Leaderboard:**
|
60 |
+
- **Point of Contact:**
|
61 |
+
|
62 |
+
### Dataset Summary
|
63 |
+
|
64 |
+
BIGPATENT, consisting of 1.3 million records of U.S. patent documents along with human written abstractive summaries. Each US patent application is filed under a Cooperative Patent Classification (CPC) code. There are nine such classification categories:
|
65 |
+
|
66 |
+
- A (Human Necessities)
|
67 |
+
- B (Performing Operations; Transporting)
|
68 |
+
- C (Chemistry; Metallurgy)
|
69 |
+
- D (Textiles; Paper)
|
70 |
+
- E (Fixed Constructions)
|
71 |
+
- F (Mechanical Engineering; Lightning; Heating; Weapons; Blasting)
|
72 |
+
- G (Physics)
|
73 |
+
- H (Electricity)
|
74 |
+
- Y (General tagging of new or cross-sectional technology)
|
75 |
+
|
76 |
+
### Supported Tasks and Leaderboards
|
77 |
+
|
78 |
+
[More Information Needed]
|
79 |
+
|
80 |
+
### Languages
|
81 |
+
|
82 |
+
English
|
83 |
+
|
84 |
+
## Dataset Structure
|
85 |
+
|
86 |
+
### Data Instances
|
87 |
+
|
88 |
+
Each instance contains a pair of `description` and `abstract`. `description` is extracted from the Description section of the Patent while `abstract` is extracted from the Abstract section.
|
89 |
+
|
90 |
+
### Data Fields
|
91 |
+
|
92 |
+
- `description`: detailed description of patent.
|
93 |
+
- `abstract`: Patent abastract.
|
94 |
+
|
95 |
+
### Data Splits
|
96 |
+
|
97 |
+
[More Information Needed]
|
98 |
+
|
99 |
+
## Dataset Creation
|
100 |
+
|
101 |
+
### Curation Rationale
|
102 |
+
|
103 |
+
[More Information Needed]
|
104 |
+
|
105 |
+
### Source Data
|
106 |
+
|
107 |
+
#### Initial Data Collection and Normalization
|
108 |
+
|
109 |
+
[More Information Needed]
|
110 |
+
|
111 |
+
#### Who are the source language producers?
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
### Annotations
|
116 |
+
|
117 |
+
#### Annotation process
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Who are the annotators?
|
122 |
+
|
123 |
+
[More Information Needed]
|
124 |
+
|
125 |
+
### Personal and Sensitive Information
|
126 |
+
|
127 |
+
[More Information Needed]
|
128 |
+
|
129 |
+
## Considerations for Using the Data
|
130 |
+
|
131 |
+
### Social Impact of Dataset
|
132 |
+
|
133 |
+
[More Information Needed]
|
134 |
+
|
135 |
+
### Discussion of Biases
|
136 |
+
|
137 |
+
[More Information Needed]
|
138 |
+
|
139 |
+
### Other Known Limitations
|
140 |
+
|
141 |
+
[More Information Needed]
|
142 |
+
|
143 |
+
## Additional Information
|
144 |
+
|
145 |
+
### Dataset Curators
|
146 |
+
|
147 |
+
[More Information Needed]
|
148 |
+
|
149 |
+
### Licensing Information
|
150 |
+
|
151 |
+
[More Information Needed]
|
152 |
+
|
153 |
+
### Citation Information
|
154 |
+
|
155 |
+
[More Information Needed]
|
big_patent.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""BigPatent Dataset."""
|
18 |
+
import glob
|
19 |
+
import gzip
|
20 |
+
import json
|
21 |
+
import os
|
22 |
+
|
23 |
+
import datasets
|
24 |
+
|
25 |
+
|
26 |
+
_CITATION = """
|
27 |
+
@misc{sharma2019bigpatent,
|
28 |
+
title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},
|
29 |
+
author={Eva Sharma and Chen Li and Lu Wang},
|
30 |
+
year={2019},
|
31 |
+
eprint={1906.03741},
|
32 |
+
archivePrefix={arXiv},
|
33 |
+
primaryClass={cs.CL}
|
34 |
+
}
|
35 |
+
"""
|
36 |
+
|
37 |
+
_DESCRIPTION = """
|
38 |
+
BIGPATENT, consisting of 1.3 million records of U.S. patent documents
|
39 |
+
along with human written abstractive summaries.
|
40 |
+
Each US patent application is filed under a Cooperative Patent Classification
|
41 |
+
(CPC) code. There are nine such classification categories:
|
42 |
+
A (Human Necessities), B (Performing Operations; Transporting),
|
43 |
+
C (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),
|
44 |
+
F (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),
|
45 |
+
G (Physics), H (Electricity), and
|
46 |
+
Y (General tagging of new or cross-sectional technology)
|
47 |
+
There are two features:
|
48 |
+
- description: detailed description of patent.
|
49 |
+
- abstract: Patent abastract.
|
50 |
+
"""
|
51 |
+
|
52 |
+
_URL = "https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa"
|
53 |
+
|
54 |
+
_DOCUMENT = "description"
|
55 |
+
_SUMMARY = "abstract"
|
56 |
+
|
57 |
+
_CPC_DESCRIPTION = {
|
58 |
+
"a": "Human Necessities",
|
59 |
+
"b": "Performing Operations; Transporting",
|
60 |
+
"c": "Chemistry; Metallurgy",
|
61 |
+
"d": "Textiles; Paper",
|
62 |
+
"e": "Fixed Constructions",
|
63 |
+
"f": "Mechanical Engineering; Lightning; Heating; Weapons; Blasting",
|
64 |
+
"g": "Physics",
|
65 |
+
"h": "Electricity",
|
66 |
+
"y": "General tagging of new or cross-sectional technology",
|
67 |
+
}
|
68 |
+
|
69 |
+
# Available versions:
|
70 |
+
# 1.0.0 lower cased tokenized words.
|
71 |
+
# 2.0.0 cased raw strings.
|
72 |
+
# 2.1.0 cased raw strings (fixed).
|
73 |
+
# TODO Add raw string versions
|
74 |
+
|
75 |
+
_VERSION = "1.0.0"
|
76 |
+
|
77 |
+
|
78 |
+
class BigPatentConfig(datasets.BuilderConfig):
|
79 |
+
"""BuilderConfig for BigPatent."""
|
80 |
+
|
81 |
+
def __init__(self, *args, cpc_codes=None, **kwargs):
|
82 |
+
"""BuilderConfig for BigPatent.
|
83 |
+
Args:
|
84 |
+
cpc_codes: str, cpc_codes
|
85 |
+
**kwargs: keyword arguments forwarded to super.
|
86 |
+
"""
|
87 |
+
super().__init__(*args, version=_VERSION, **kwargs)
|
88 |
+
self.cpc_codes = cpc_codes
|
89 |
+
|
90 |
+
|
91 |
+
class BigPatent(datasets.GeneratorBasedBuilder):
|
92 |
+
"""BigPatent datasets."""
|
93 |
+
|
94 |
+
BUILDER_CONFIGS = [
|
95 |
+
BigPatentConfig(
|
96 |
+
cpc_codes=list(_CPC_DESCRIPTION),
|
97 |
+
name="all",
|
98 |
+
description="Patents under all categories.",
|
99 |
+
),
|
100 |
+
] + [
|
101 |
+
BigPatentConfig( # pylint:disable=g-complex-comprehension
|
102 |
+
cpc_codes=[k],
|
103 |
+
name=k,
|
104 |
+
description=("Patents under Cooperative Patent Classification (CPC)" "{0}: {1}".format(k, v)),
|
105 |
+
)
|
106 |
+
for k, v in sorted(_CPC_DESCRIPTION.items())
|
107 |
+
]
|
108 |
+
DEFAULT_CONFIG_NAME = "all"
|
109 |
+
VERSION = _VERSION
|
110 |
+
|
111 |
+
def _info(self):
|
112 |
+
return datasets.DatasetInfo(
|
113 |
+
description=_DESCRIPTION,
|
114 |
+
features=datasets.Features({_DOCUMENT: datasets.Value("string"), _SUMMARY: datasets.Value("string")}),
|
115 |
+
supervised_keys=(_DOCUMENT, _SUMMARY),
|
116 |
+
homepage="https://evasharma.github.io/bigpatent/",
|
117 |
+
citation=_CITATION,
|
118 |
+
)
|
119 |
+
|
120 |
+
def _split_generators(self, dl_manager):
|
121 |
+
"""Returns SplitGenerators."""
|
122 |
+
dl_path = dl_manager.download_and_extract(_URL)
|
123 |
+
split_types = ["train", "val", "test"]
|
124 |
+
extract_paths = dl_manager.extract(
|
125 |
+
{k: os.path.join(dl_path, "bigPatentData", k + ".tar.gz") for k in split_types}
|
126 |
+
)
|
127 |
+
extract_paths = {k: os.path.join(extract_paths[k], k) for k in split_types}
|
128 |
+
|
129 |
+
return [
|
130 |
+
datasets.SplitGenerator(
|
131 |
+
name=datasets.Split.TRAIN,
|
132 |
+
gen_kwargs={"path": extract_paths["train"]},
|
133 |
+
),
|
134 |
+
datasets.SplitGenerator(
|
135 |
+
name=datasets.Split.VALIDATION,
|
136 |
+
gen_kwargs={"path": extract_paths["val"]},
|
137 |
+
),
|
138 |
+
datasets.SplitGenerator(
|
139 |
+
name=datasets.Split.TEST,
|
140 |
+
gen_kwargs={"path": extract_paths["test"]},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, path=None):
|
145 |
+
"""Yields examples."""
|
146 |
+
for cpc_code in self.config.cpc_codes:
|
147 |
+
filenames = glob.glob(os.path.join(path, cpc_code, "*"))
|
148 |
+
for filename in sorted(filenames):
|
149 |
+
with open(filename, "rb") as fin:
|
150 |
+
fin = gzip.GzipFile(fileobj=fin)
|
151 |
+
for row in fin:
|
152 |
+
json_obj = json.loads(row)
|
153 |
+
yield json_obj["publication_number"], {
|
154 |
+
_DOCUMENT: json_obj[_DOCUMENT],
|
155 |
+
_SUMMARY: json_obj[_SUMMARY],
|
156 |
+
}
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"all": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "all", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 23363518650, "num_examples": 1207222, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 1290154487, "num_examples": 67068, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 1296234391, "num_examples": 67072, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 25949907528, "size_in_bytes": 32397953399}, "a": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "a", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3329778447, "num_examples": 174134, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 184116486, "num_examples": 9674, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 185987552, "num_examples": 9675, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 3699882485, "size_in_bytes": 10147928356}, "b": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "b", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2574594655, "num_examples": 161520, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 143029380, "num_examples": 8973, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 140741033, "num_examples": 8974, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 2858365068, "size_in_bytes": 9306410939}, "c": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "c", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2641973267, "num_examples": 101042, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 145441704, "num_examples": 5613, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 149052258, "num_examples": 5614, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 2936467229, "size_in_bytes": 9384513100}, "d": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "d", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 160467163, "num_examples": 10164, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 8667961, "num_examples": 565, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 8713720, "num_examples": 565, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 177848844, "size_in_bytes": 6625894715}, "e": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "e", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 535567259, "num_examples": 34443, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 28549964, "num_examples": 1914, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 29843613, "num_examples": 1914, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 593960836, "size_in_bytes": 7042006707}, "f": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "f", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1297707404, "num_examples": 85568, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 72367466, "num_examples": 4754, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 71676041, "num_examples": 4754, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 1441750911, "size_in_bytes": 7889796782}, "g": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "g", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5571186559, "num_examples": 258935, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 309182447, "num_examples": 14385, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 310624265, "num_examples": 14386, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 6190993271, "size_in_bytes": 12639039142}, "h": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "h", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4988365946, "num_examples": 257019, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 275293153, "num_examples": 14279, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 274505113, "num_examples": 14279, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 5538164212, "size_in_bytes": 11986210083}, "y": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "y", "version": "1.0.0", "splits": {"train": {"name": "train", "num_bytes": 2263877990, "num_examples": 124397, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 123505958, "num_examples": 6911, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 125090828, "num_examples": 6911, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 2512474776, "size_in_bytes": 8960520647}}
|
dummy/a/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd6c8512c947e7c35944b208ec378deaf87b32258e12384a8c9e125966944260
|
3 |
+
size 2700
|
dummy/all/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7634f71d71a3bfc3e4a63511be7094accade78aefd55672d564b3d730308483
|
3 |
+
size 18035
|
dummy/b/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f7c7124b880dc7173f5bde459a429d7964255ab0e316ed5f21574122a77f6c9
|
3 |
+
size 2682
|
dummy/c/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f431ba209c6efd631424ebcbe76e83d45c4e75eb15bfc32194e446fe8005d8e
|
3 |
+
size 2703
|
dummy/d/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89222bd4cef2cf1e740972f38cf7cac9bf4c4d2e3e3a53aae50e5e495fbae514
|
3 |
+
size 2691
|
dummy/e/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:351e4d18ac79f72e524d89d3d76b703144039a5c36265642c141e9d1317c6bd4
|
3 |
+
size 2682
|
dummy/f/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fdfb6780f61e1457792716def4cd75d40b0040bd72c2d526d834fc199dbfc6a
|
3 |
+
size 2685
|
dummy/g/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b82e91071358cb408d53039508510c9188a249e1a2979a19a116e7e6babb781
|
3 |
+
size 2691
|
dummy/h/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:799ab5b01f91ea5e17851d707dd30c1aa95dd564d495a4420f5a917066a64a89
|
3 |
+
size 2682
|
dummy/y/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fdf24b3e64c11ed04610f1b27f4b70e6c8fc458276324f7d63e72bfe2a2e7050
|
3 |
+
size 2703
|