Datasets:

Languages:
English
ArXiv:
License:
system HF staff commited on
Commit
b8a7657
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - no-annotation
4
+ language_creators:
5
+ - found
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - unknown
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - n>1M
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - conditional-text-generation
18
+ task_ids:
19
+ - summarization
20
+ ---
21
+
22
+ # Dataset Card for Big Patent
23
+
24
+ ## Table of Contents
25
+
26
+ - [Dataset Card for Big Patent](#dataset-card-for-big-patent)
27
+ - [Table of Contents](#table-of-contents)
28
+ - [Dataset Description](#dataset-description)
29
+ - [Dataset Summary](#dataset-summary)
30
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
31
+ - [Languages](#languages)
32
+ - [Dataset Structure](#dataset-structure)
33
+ - [Data Instances](#data-instances)
34
+ - [Data Fields](#data-fields)
35
+ - [Data Splits](#data-splits)
36
+ - [Dataset Creation](#dataset-creation)
37
+ - [Curation Rationale](#curation-rationale)
38
+ - [Source Data](#source-data)
39
+ - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
40
+ - [Who are the source language producers?](#who-are-the-source-language-producers)
41
+ - [Annotations](#annotations)
42
+ - [Annotation process](#annotation-process)
43
+ - [Who are the annotators?](#who-are-the-annotators)
44
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
45
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
46
+ - [Social Impact of Dataset](#social-impact-of-dataset)
47
+ - [Discussion of Biases](#discussion-of-biases)
48
+ - [Other Known Limitations](#other-known-limitations)
49
+ - [Additional Information](#additional-information)
50
+ - [Dataset Curators](#dataset-curators)
51
+ - [Licensing Information](#licensing-information)
52
+ - [Citation Information](#citation-information)
53
+
54
+ ## Dataset Description
55
+
56
+ - **Homepage:[Big Patent](https://evasharma.github.io/bigpatent/)**
57
+ - **Repository:**
58
+ - **Paper:[BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization](https://arxiv.org/abs/1906.03741)**
59
+ - **Leaderboard:**
60
+ - **Point of Contact:**
61
+
62
+ ### Dataset Summary
63
+
64
+ BIGPATENT, consisting of 1.3 million records of U.S. patent documents along with human written abstractive summaries. Each US patent application is filed under a Cooperative Patent Classification (CPC) code. There are nine such classification categories:
65
+
66
+ - A (Human Necessities)
67
+ - B (Performing Operations; Transporting)
68
+ - C (Chemistry; Metallurgy)
69
+ - D (Textiles; Paper)
70
+ - E (Fixed Constructions)
71
+ - F (Mechanical Engineering; Lightning; Heating; Weapons; Blasting)
72
+ - G (Physics)
73
+ - H (Electricity)
74
+ - Y (General tagging of new or cross-sectional technology)
75
+
76
+ ### Supported Tasks and Leaderboards
77
+
78
+ [More Information Needed]
79
+
80
+ ### Languages
81
+
82
+ English
83
+
84
+ ## Dataset Structure
85
+
86
+ ### Data Instances
87
+
88
+ Each instance contains a pair of `description` and `abstract`. `description` is extracted from the Description section of the Patent while `abstract` is extracted from the Abstract section.
89
+
90
+ ### Data Fields
91
+
92
+ - `description`: detailed description of patent.
93
+ - `abstract`: Patent abastract.
94
+
95
+ ### Data Splits
96
+
97
+ [More Information Needed]
98
+
99
+ ## Dataset Creation
100
+
101
+ ### Curation Rationale
102
+
103
+ [More Information Needed]
104
+
105
+ ### Source Data
106
+
107
+ #### Initial Data Collection and Normalization
108
+
109
+ [More Information Needed]
110
+
111
+ #### Who are the source language producers?
112
+
113
+ [More Information Needed]
114
+
115
+ ### Annotations
116
+
117
+ #### Annotation process
118
+
119
+ [More Information Needed]
120
+
121
+ #### Who are the annotators?
122
+
123
+ [More Information Needed]
124
+
125
+ ### Personal and Sensitive Information
126
+
127
+ [More Information Needed]
128
+
129
+ ## Considerations for Using the Data
130
+
131
+ ### Social Impact of Dataset
132
+
133
+ [More Information Needed]
134
+
135
+ ### Discussion of Biases
136
+
137
+ [More Information Needed]
138
+
139
+ ### Other Known Limitations
140
+
141
+ [More Information Needed]
142
+
143
+ ## Additional Information
144
+
145
+ ### Dataset Curators
146
+
147
+ [More Information Needed]
148
+
149
+ ### Licensing Information
150
+
151
+ [More Information Needed]
152
+
153
+ ### Citation Information
154
+
155
+ [More Information Needed]
big_patent.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """BigPatent Dataset."""
18
+ import glob
19
+ import gzip
20
+ import json
21
+ import os
22
+
23
+ import datasets
24
+
25
+
26
+ _CITATION = """
27
+ @misc{sharma2019bigpatent,
28
+ title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},
29
+ author={Eva Sharma and Chen Li and Lu Wang},
30
+ year={2019},
31
+ eprint={1906.03741},
32
+ archivePrefix={arXiv},
33
+ primaryClass={cs.CL}
34
+ }
35
+ """
36
+
37
+ _DESCRIPTION = """
38
+ BIGPATENT, consisting of 1.3 million records of U.S. patent documents
39
+ along with human written abstractive summaries.
40
+ Each US patent application is filed under a Cooperative Patent Classification
41
+ (CPC) code. There are nine such classification categories:
42
+ A (Human Necessities), B (Performing Operations; Transporting),
43
+ C (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),
44
+ F (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),
45
+ G (Physics), H (Electricity), and
46
+ Y (General tagging of new or cross-sectional technology)
47
+ There are two features:
48
+ - description: detailed description of patent.
49
+ - abstract: Patent abastract.
50
+ """
51
+
52
+ _URL = "https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa"
53
+
54
+ _DOCUMENT = "description"
55
+ _SUMMARY = "abstract"
56
+
57
+ _CPC_DESCRIPTION = {
58
+ "a": "Human Necessities",
59
+ "b": "Performing Operations; Transporting",
60
+ "c": "Chemistry; Metallurgy",
61
+ "d": "Textiles; Paper",
62
+ "e": "Fixed Constructions",
63
+ "f": "Mechanical Engineering; Lightning; Heating; Weapons; Blasting",
64
+ "g": "Physics",
65
+ "h": "Electricity",
66
+ "y": "General tagging of new or cross-sectional technology",
67
+ }
68
+
69
+ # Available versions:
70
+ # 1.0.0 lower cased tokenized words.
71
+ # 2.0.0 cased raw strings.
72
+ # 2.1.0 cased raw strings (fixed).
73
+ # TODO Add raw string versions
74
+
75
+ _VERSION = "1.0.0"
76
+
77
+
78
+ class BigPatentConfig(datasets.BuilderConfig):
79
+ """BuilderConfig for BigPatent."""
80
+
81
+ def __init__(self, *args, cpc_codes=None, **kwargs):
82
+ """BuilderConfig for BigPatent.
83
+ Args:
84
+ cpc_codes: str, cpc_codes
85
+ **kwargs: keyword arguments forwarded to super.
86
+ """
87
+ super().__init__(*args, version=_VERSION, **kwargs)
88
+ self.cpc_codes = cpc_codes
89
+
90
+
91
+ class BigPatent(datasets.GeneratorBasedBuilder):
92
+ """BigPatent datasets."""
93
+
94
+ BUILDER_CONFIGS = [
95
+ BigPatentConfig(
96
+ cpc_codes=list(_CPC_DESCRIPTION),
97
+ name="all",
98
+ description="Patents under all categories.",
99
+ ),
100
+ ] + [
101
+ BigPatentConfig( # pylint:disable=g-complex-comprehension
102
+ cpc_codes=[k],
103
+ name=k,
104
+ description=("Patents under Cooperative Patent Classification (CPC)" "{0}: {1}".format(k, v)),
105
+ )
106
+ for k, v in sorted(_CPC_DESCRIPTION.items())
107
+ ]
108
+ DEFAULT_CONFIG_NAME = "all"
109
+ VERSION = _VERSION
110
+
111
+ def _info(self):
112
+ return datasets.DatasetInfo(
113
+ description=_DESCRIPTION,
114
+ features=datasets.Features({_DOCUMENT: datasets.Value("string"), _SUMMARY: datasets.Value("string")}),
115
+ supervised_keys=(_DOCUMENT, _SUMMARY),
116
+ homepage="https://evasharma.github.io/bigpatent/",
117
+ citation=_CITATION,
118
+ )
119
+
120
+ def _split_generators(self, dl_manager):
121
+ """Returns SplitGenerators."""
122
+ dl_path = dl_manager.download_and_extract(_URL)
123
+ split_types = ["train", "val", "test"]
124
+ extract_paths = dl_manager.extract(
125
+ {k: os.path.join(dl_path, "bigPatentData", k + ".tar.gz") for k in split_types}
126
+ )
127
+ extract_paths = {k: os.path.join(extract_paths[k], k) for k in split_types}
128
+
129
+ return [
130
+ datasets.SplitGenerator(
131
+ name=datasets.Split.TRAIN,
132
+ gen_kwargs={"path": extract_paths["train"]},
133
+ ),
134
+ datasets.SplitGenerator(
135
+ name=datasets.Split.VALIDATION,
136
+ gen_kwargs={"path": extract_paths["val"]},
137
+ ),
138
+ datasets.SplitGenerator(
139
+ name=datasets.Split.TEST,
140
+ gen_kwargs={"path": extract_paths["test"]},
141
+ ),
142
+ ]
143
+
144
+ def _generate_examples(self, path=None):
145
+ """Yields examples."""
146
+ for cpc_code in self.config.cpc_codes:
147
+ filenames = glob.glob(os.path.join(path, cpc_code, "*"))
148
+ for filename in sorted(filenames):
149
+ with open(filename, "rb") as fin:
150
+ fin = gzip.GzipFile(fileobj=fin)
151
+ for row in fin:
152
+ json_obj = json.loads(row)
153
+ yield json_obj["publication_number"], {
154
+ _DOCUMENT: json_obj[_DOCUMENT],
155
+ _SUMMARY: json_obj[_SUMMARY],
156
+ }
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"all": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "all", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 23363518650, "num_examples": 1207222, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 1290154487, "num_examples": 67068, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 1296234391, "num_examples": 67072, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 25949907528, "size_in_bytes": 32397953399}, "a": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "a", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3329778447, "num_examples": 174134, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 184116486, "num_examples": 9674, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 185987552, "num_examples": 9675, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 3699882485, "size_in_bytes": 10147928356}, "b": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "b", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2574594655, "num_examples": 161520, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 143029380, "num_examples": 8973, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 140741033, "num_examples": 8974, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 2858365068, "size_in_bytes": 9306410939}, "c": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "c", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2641973267, "num_examples": 101042, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 145441704, "num_examples": 5613, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 149052258, "num_examples": 5614, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 2936467229, "size_in_bytes": 9384513100}, "d": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "d", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 160467163, "num_examples": 10164, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 8667961, "num_examples": 565, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 8713720, "num_examples": 565, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 177848844, "size_in_bytes": 6625894715}, "e": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "e", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 535567259, "num_examples": 34443, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 28549964, "num_examples": 1914, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 29843613, "num_examples": 1914, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 593960836, "size_in_bytes": 7042006707}, "f": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "f", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1297707404, "num_examples": 85568, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 72367466, "num_examples": 4754, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 71676041, "num_examples": 4754, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 1441750911, "size_in_bytes": 7889796782}, "g": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "g", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5571186559, "num_examples": 258935, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 309182447, "num_examples": 14385, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 310624265, "num_examples": 14386, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 6190993271, "size_in_bytes": 12639039142}, "h": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "h", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4988365946, "num_examples": 257019, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 275293153, "num_examples": 14279, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 274505113, "num_examples": 14279, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 5538164212, "size_in_bytes": 11986210083}, "y": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "y", "version": "1.0.0", "splits": {"train": {"name": "train", "num_bytes": 2263877990, "num_examples": 124397, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 123505958, "num_examples": 6911, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 125090828, "num_examples": 6911, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 2512474776, "size_in_bytes": 8960520647}}
dummy/a/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd6c8512c947e7c35944b208ec378deaf87b32258e12384a8c9e125966944260
3
+ size 2700
dummy/all/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7634f71d71a3bfc3e4a63511be7094accade78aefd55672d564b3d730308483
3
+ size 18035
dummy/b/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f7c7124b880dc7173f5bde459a429d7964255ab0e316ed5f21574122a77f6c9
3
+ size 2682
dummy/c/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f431ba209c6efd631424ebcbe76e83d45c4e75eb15bfc32194e446fe8005d8e
3
+ size 2703
dummy/d/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89222bd4cef2cf1e740972f38cf7cac9bf4c4d2e3e3a53aae50e5e495fbae514
3
+ size 2691
dummy/e/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:351e4d18ac79f72e524d89d3d76b703144039a5c36265642c141e9d1317c6bd4
3
+ size 2682
dummy/f/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fdfb6780f61e1457792716def4cd75d40b0040bd72c2d526d834fc199dbfc6a
3
+ size 2685
dummy/g/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b82e91071358cb408d53039508510c9188a249e1a2979a19a116e7e6babb781
3
+ size 2691
dummy/h/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:799ab5b01f91ea5e17851d707dd30c1aa95dd564d495a4420f5a917066a64a89
3
+ size 2682
dummy/y/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdf24b3e64c11ed04610f1b27f4b70e6c8fc458276324f7d63e72bfe2a2e7050
3
+ size 2703