Commit
•
5754856
1
Parent(s):
f31a317
Add 2.1.2 version with cased raw strings (#3)
Browse files- Add 2.1.2 data files (04f83833dba762753c1c4d12c5cff6e6e4926b96)
- Move 1.0.0 data files (074aeed8e1a0d039c13b171a77a67950f71c5496)
- Update dataset loading script (0f27e656ac5751add50114c74468dfb433fdec30)
- Update instructions about version in dataset card (a815ad4f6cfd2bc49b15b3c734a8e29f8fe336c6)
- Update metadata in dataset card (30ea432618e70552803977936d6854c9b03c1433)
- Update metadata in legacy JSON (ef871d08aeb1fe2293f40380298f7f2071f485a4)
- README.md +85 -60
- big_patent.py +37 -28
- data/{test.zip → 1.0.0/test.zip} +0 -0
- data/{train.zip → 1.0.0/train.zip} +0 -0
- data/{val.zip → 1.0.0/val.zip} +0 -0
- data/2.1.2/test.zip +3 -0
- data/2.1.2/train.zip +3 -0
- data/2.1.2/val.zip +3 -0
- dataset_infos.json +1 -1
README.md
CHANGED
@@ -42,16 +42,16 @@ dataset_info:
|
|
42 |
dtype: string
|
43 |
splits:
|
44 |
- name: train
|
45 |
-
num_bytes:
|
46 |
num_examples: 1207222
|
47 |
- name: validation
|
48 |
-
num_bytes:
|
49 |
num_examples: 67068
|
50 |
- name: test
|
51 |
-
num_bytes:
|
52 |
num_examples: 67072
|
53 |
-
download_size:
|
54 |
-
dataset_size:
|
55 |
- config_name: a
|
56 |
features:
|
57 |
- name: description
|
@@ -60,16 +60,16 @@ dataset_info:
|
|
60 |
dtype: string
|
61 |
splits:
|
62 |
- name: train
|
63 |
-
num_bytes:
|
64 |
num_examples: 174134
|
65 |
- name: validation
|
66 |
-
num_bytes:
|
67 |
num_examples: 9674
|
68 |
- name: test
|
69 |
-
num_bytes:
|
70 |
num_examples: 9675
|
71 |
-
download_size:
|
72 |
-
dataset_size:
|
73 |
- config_name: b
|
74 |
features:
|
75 |
- name: description
|
@@ -78,16 +78,16 @@ dataset_info:
|
|
78 |
dtype: string
|
79 |
splits:
|
80 |
- name: train
|
81 |
-
num_bytes:
|
82 |
num_examples: 161520
|
83 |
- name: validation
|
84 |
-
num_bytes:
|
85 |
num_examples: 8973
|
86 |
- name: test
|
87 |
-
num_bytes:
|
88 |
num_examples: 8974
|
89 |
-
download_size:
|
90 |
-
dataset_size:
|
91 |
- config_name: c
|
92 |
features:
|
93 |
- name: description
|
@@ -96,16 +96,16 @@ dataset_info:
|
|
96 |
dtype: string
|
97 |
splits:
|
98 |
- name: train
|
99 |
-
num_bytes:
|
100 |
num_examples: 101042
|
101 |
- name: validation
|
102 |
-
num_bytes:
|
103 |
num_examples: 5613
|
104 |
- name: test
|
105 |
-
num_bytes:
|
106 |
num_examples: 5614
|
107 |
-
download_size:
|
108 |
-
dataset_size:
|
109 |
- config_name: d
|
110 |
features:
|
111 |
- name: description
|
@@ -114,16 +114,16 @@ dataset_info:
|
|
114 |
dtype: string
|
115 |
splits:
|
116 |
- name: train
|
117 |
-
num_bytes:
|
118 |
num_examples: 10164
|
119 |
- name: validation
|
120 |
-
num_bytes:
|
121 |
num_examples: 565
|
122 |
- name: test
|
123 |
-
num_bytes:
|
124 |
num_examples: 565
|
125 |
-
download_size:
|
126 |
-
dataset_size:
|
127 |
- config_name: e
|
128 |
features:
|
129 |
- name: description
|
@@ -132,16 +132,16 @@ dataset_info:
|
|
132 |
dtype: string
|
133 |
splits:
|
134 |
- name: train
|
135 |
-
num_bytes:
|
136 |
num_examples: 34443
|
137 |
- name: validation
|
138 |
-
num_bytes:
|
139 |
num_examples: 1914
|
140 |
- name: test
|
141 |
-
num_bytes:
|
142 |
num_examples: 1914
|
143 |
-
download_size:
|
144 |
-
dataset_size:
|
145 |
- config_name: f
|
146 |
features:
|
147 |
- name: description
|
@@ -150,16 +150,16 @@ dataset_info:
|
|
150 |
dtype: string
|
151 |
splits:
|
152 |
- name: train
|
153 |
-
num_bytes:
|
154 |
num_examples: 85568
|
155 |
- name: validation
|
156 |
-
num_bytes:
|
157 |
num_examples: 4754
|
158 |
- name: test
|
159 |
-
num_bytes:
|
160 |
num_examples: 4754
|
161 |
-
download_size:
|
162 |
-
dataset_size:
|
163 |
- config_name: g
|
164 |
features:
|
165 |
- name: description
|
@@ -168,16 +168,16 @@ dataset_info:
|
|
168 |
dtype: string
|
169 |
splits:
|
170 |
- name: train
|
171 |
-
num_bytes:
|
172 |
num_examples: 258935
|
173 |
- name: validation
|
174 |
-
num_bytes:
|
175 |
num_examples: 14385
|
176 |
- name: test
|
177 |
-
num_bytes:
|
178 |
num_examples: 14386
|
179 |
-
download_size:
|
180 |
-
dataset_size:
|
181 |
- config_name: h
|
182 |
features:
|
183 |
- name: description
|
@@ -186,16 +186,16 @@ dataset_info:
|
|
186 |
dtype: string
|
187 |
splits:
|
188 |
- name: train
|
189 |
-
num_bytes:
|
190 |
num_examples: 257019
|
191 |
- name: validation
|
192 |
-
num_bytes:
|
193 |
num_examples: 14279
|
194 |
- name: test
|
195 |
-
num_bytes:
|
196 |
num_examples: 14279
|
197 |
-
download_size:
|
198 |
-
dataset_size:
|
199 |
- config_name: y
|
200 |
features:
|
201 |
- name: description
|
@@ -204,16 +204,16 @@ dataset_info:
|
|
204 |
dtype: string
|
205 |
splits:
|
206 |
- name: train
|
207 |
-
num_bytes:
|
208 |
num_examples: 124397
|
209 |
- name: validation
|
210 |
-
num_bytes:
|
211 |
num_examples: 6911
|
212 |
- name: test
|
213 |
-
num_bytes:
|
214 |
num_examples: 6911
|
215 |
-
download_size:
|
216 |
-
dataset_size:
|
217 |
---
|
218 |
|
219 |
# Dataset Card for Big Patent
|
@@ -252,17 +252,36 @@ dataset_info:
|
|
252 |
|
253 |
### Dataset Summary
|
254 |
|
255 |
-
BIGPATENT, consisting of 1.3 million records of U.S. patent documents along with human written abstractive summaries.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
-
- A (Human Necessities)
|
258 |
-
- B (Performing Operations; Transporting)
|
259 |
-
- C (Chemistry; Metallurgy)
|
260 |
-
- D (Textiles; Paper)
|
261 |
-
- E (Fixed Constructions)
|
262 |
-
- F (Mechanical Engineering; Lightning; Heating; Weapons; Blasting)
|
263 |
-
- G (Physics)
|
264 |
-
- H (Electricity)
|
265 |
-
- Y (General tagging of new or cross-sectional technology)
|
266 |
|
267 |
### Supported Tasks and Leaderboards
|
268 |
|
@@ -277,6 +296,12 @@ English
|
|
277 |
### Data Instances
|
278 |
|
279 |
Each instance contains a pair of `description` and `abstract`. `description` is extracted from the Description section of the Patent while `abstract` is extracted from the Abstract section.
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
|
281 |
### Data Fields
|
282 |
|
|
|
42 |
dtype: string
|
43 |
splits:
|
44 |
- name: train
|
45 |
+
num_bytes: 38367048389
|
46 |
num_examples: 1207222
|
47 |
- name: validation
|
48 |
+
num_bytes: 2115827002
|
49 |
num_examples: 67068
|
50 |
- name: test
|
51 |
+
num_bytes: 2129505280
|
52 |
num_examples: 67072
|
53 |
+
download_size: 10142923776
|
54 |
+
dataset_size: 42612380671
|
55 |
- config_name: a
|
56 |
features:
|
57 |
- name: description
|
|
|
60 |
dtype: string
|
61 |
splits:
|
62 |
- name: train
|
63 |
+
num_bytes: 5683460620
|
64 |
num_examples: 174134
|
65 |
- name: validation
|
66 |
+
num_bytes: 313324505
|
67 |
num_examples: 9674
|
68 |
- name: test
|
69 |
+
num_bytes: 316633277
|
70 |
num_examples: 9675
|
71 |
+
download_size: 10142923776
|
72 |
+
dataset_size: 6313418402
|
73 |
- config_name: b
|
74 |
features:
|
75 |
- name: description
|
|
|
78 |
dtype: string
|
79 |
splits:
|
80 |
- name: train
|
81 |
+
num_bytes: 4236070976
|
82 |
num_examples: 161520
|
83 |
- name: validation
|
84 |
+
num_bytes: 234425138
|
85 |
num_examples: 8973
|
86 |
- name: test
|
87 |
+
num_bytes: 231538734
|
88 |
num_examples: 8974
|
89 |
+
download_size: 10142923776
|
90 |
+
dataset_size: 4702034848
|
91 |
- config_name: c
|
92 |
features:
|
93 |
- name: description
|
|
|
96 |
dtype: string
|
97 |
splits:
|
98 |
- name: train
|
99 |
+
num_bytes: 4506249306
|
100 |
num_examples: 101042
|
101 |
- name: validation
|
102 |
+
num_bytes: 244684775
|
103 |
num_examples: 5613
|
104 |
- name: test
|
105 |
+
num_bytes: 252566793
|
106 |
num_examples: 5614
|
107 |
+
download_size: 10142923776
|
108 |
+
dataset_size: 5003500874
|
109 |
- config_name: d
|
110 |
features:
|
111 |
- name: description
|
|
|
114 |
dtype: string
|
115 |
splits:
|
116 |
- name: train
|
117 |
+
num_bytes: 264717412
|
118 |
num_examples: 10164
|
119 |
- name: validation
|
120 |
+
num_bytes: 14560482
|
121 |
num_examples: 565
|
122 |
- name: test
|
123 |
+
num_bytes: 14403430
|
124 |
num_examples: 565
|
125 |
+
download_size: 10142923776
|
126 |
+
dataset_size: 293681324
|
127 |
- config_name: e
|
128 |
features:
|
129 |
- name: description
|
|
|
132 |
dtype: string
|
133 |
splits:
|
134 |
- name: train
|
135 |
+
num_bytes: 881101433
|
136 |
num_examples: 34443
|
137 |
- name: validation
|
138 |
+
num_bytes: 48646158
|
139 |
num_examples: 1914
|
140 |
- name: test
|
141 |
+
num_bytes: 48586429
|
142 |
num_examples: 1914
|
143 |
+
download_size: 10142923776
|
144 |
+
dataset_size: 978334020
|
145 |
- config_name: f
|
146 |
features:
|
147 |
- name: description
|
|
|
150 |
dtype: string
|
151 |
splits:
|
152 |
- name: train
|
153 |
+
num_bytes: 2146383473
|
154 |
num_examples: 85568
|
155 |
- name: validation
|
156 |
+
num_bytes: 119632631
|
157 |
num_examples: 4754
|
158 |
- name: test
|
159 |
+
num_bytes: 119596303
|
160 |
num_examples: 4754
|
161 |
+
download_size: 10142923776
|
162 |
+
dataset_size: 2385612407
|
163 |
- config_name: g
|
164 |
features:
|
165 |
- name: description
|
|
|
168 |
dtype: string
|
169 |
splits:
|
170 |
- name: train
|
171 |
+
num_bytes: 8877854206
|
172 |
num_examples: 258935
|
173 |
- name: validation
|
174 |
+
num_bytes: 492581177
|
175 |
num_examples: 14385
|
176 |
- name: test
|
177 |
+
num_bytes: 496324853
|
178 |
num_examples: 14386
|
179 |
+
download_size: 10142923776
|
180 |
+
dataset_size: 9866760236
|
181 |
- config_name: h
|
182 |
features:
|
183 |
- name: description
|
|
|
186 |
dtype: string
|
187 |
splits:
|
188 |
- name: train
|
189 |
+
num_bytes: 8075621958
|
190 |
num_examples: 257019
|
191 |
- name: validation
|
192 |
+
num_bytes: 447602356
|
193 |
num_examples: 14279
|
194 |
- name: test
|
195 |
+
num_bytes: 445460513
|
196 |
num_examples: 14279
|
197 |
+
download_size: 10142923776
|
198 |
+
dataset_size: 8968684827
|
199 |
- config_name: y
|
200 |
features:
|
201 |
- name: description
|
|
|
204 |
dtype: string
|
205 |
splits:
|
206 |
- name: train
|
207 |
+
num_bytes: 3695589005
|
208 |
num_examples: 124397
|
209 |
- name: validation
|
210 |
+
num_bytes: 200369780
|
211 |
num_examples: 6911
|
212 |
- name: test
|
213 |
+
num_bytes: 204394948
|
214 |
num_examples: 6911
|
215 |
+
download_size: 10142923776
|
216 |
+
dataset_size: 4100353733
|
217 |
---
|
218 |
|
219 |
# Dataset Card for Big Patent
|
|
|
252 |
|
253 |
### Dataset Summary
|
254 |
|
255 |
+
BIGPATENT, consisting of 1.3 million records of U.S. patent documents along with human written abstractive summaries.
|
256 |
+
Each US patent application is filed under a Cooperative Patent Classification (CPC) code.
|
257 |
+
There are nine such classification categories:
|
258 |
+
- a: Human Necessities
|
259 |
+
- b: Performing Operations; Transporting
|
260 |
+
- c: Chemistry; Metallurgy
|
261 |
+
- d: Textiles; Paper
|
262 |
+
- e: Fixed Constructions
|
263 |
+
- f: Mechanical Engineering; Lightning; Heating; Weapons; Blasting
|
264 |
+
- g: Physics
|
265 |
+
- h: Electricity
|
266 |
+
- y: General tagging of new or cross-sectional technology
|
267 |
+
|
268 |
+
Current defaults are 2.1.2 version (fix update to cased raw strings) and 'all' CPC codes:
|
269 |
+
```python
|
270 |
+
from datasets import load_dataset
|
271 |
+
|
272 |
+
ds = load_dataset("big_patent") # default is 'all' CPC codes
|
273 |
+
ds = load_dataset("big_patent", "all") # the same as above
|
274 |
+
ds = load_dataset("big_patent", "a") # only 'a' CPC codes
|
275 |
+
ds = load_dataset("big_patent", codes=["a", "b"])
|
276 |
+
```
|
277 |
+
|
278 |
+
To use 1.0.0 version (lower cased tokenized words), pass both parameters `codes` and `version`:
|
279 |
+
```python
|
280 |
+
ds = load_dataset("big_patent", codes="all", version="1.0.0")
|
281 |
+
ds = load_dataset("big_patent", codes="a", version="1.0.0")
|
282 |
+
ds = load_dataset("big_patent", codes=["a", "b"], version="1.0.0")
|
283 |
+
```
|
284 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
### Supported Tasks and Leaderboards
|
287 |
|
|
|
296 |
### Data Instances
|
297 |
|
298 |
Each instance contains a pair of `description` and `abstract`. `description` is extracted from the Description section of the Patent while `abstract` is extracted from the Abstract section.
|
299 |
+
```
|
300 |
+
{
|
301 |
+
'description': 'FIELD OF THE INVENTION \n [0001] This invention relates to novel calcium phosphate-coated implantable medical devices and processes of making same. The unique calcium-phosphate coated implantable medical devices minimize...',
|
302 |
+
'abstract': 'This invention relates to novel calcium phosphate-coated implantable medical devices...'
|
303 |
+
}
|
304 |
+
```
|
305 |
|
306 |
### Data Fields
|
307 |
|
big_patent.py
CHANGED
@@ -15,7 +15,6 @@
|
|
15 |
|
16 |
# Lint as: python3
|
17 |
"""BigPatent Dataset."""
|
18 |
-
import glob
|
19 |
import gzip
|
20 |
import json
|
21 |
import os
|
@@ -53,12 +52,8 @@ There are two features:
|
|
53 |
|
54 |
_LICENSE = "Creative Commons Attribution 4.0 International"
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
"train": f"{_REPO}/train.zip",
|
59 |
-
"validation": f"{_REPO}/val.zip",
|
60 |
-
"test": f"{_REPO}/test.zip",
|
61 |
-
}
|
62 |
|
63 |
_DOCUMENT = "description"
|
64 |
_SUMMARY = "abstract"
|
@@ -78,38 +73,44 @@ _CPC_DESCRIPTION = {
|
|
78 |
# Available versions:
|
79 |
# 1.0.0 lower cased tokenized words.
|
80 |
# 2.0.0 cased raw strings.
|
81 |
-
# 2.1.
|
82 |
-
# TODO Add raw string versions
|
83 |
|
84 |
-
_VERSION = "1.
|
85 |
|
86 |
|
87 |
class BigPatentConfig(datasets.BuilderConfig):
|
88 |
"""BuilderConfig for BigPatent."""
|
89 |
|
90 |
-
def __init__(self,
|
91 |
"""BuilderConfig for BigPatent.
|
92 |
Args:
|
93 |
-
|
|
|
94 |
**kwargs: keyword arguments forwarded to super.
|
95 |
"""
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
|
100 |
class BigPatent(datasets.GeneratorBasedBuilder):
|
101 |
"""BigPatent datasets."""
|
102 |
|
|
|
103 |
BUILDER_CONFIGS = [
|
104 |
BigPatentConfig(
|
105 |
-
|
106 |
-
name="all",
|
107 |
description="Patents under all categories.",
|
108 |
),
|
109 |
] + [
|
110 |
-
BigPatentConfig(
|
111 |
-
|
112 |
-
name=k,
|
113 |
description=f"Patents under Cooperative Patent Classification (CPC) {k}: {v}",
|
114 |
)
|
115 |
for k, v in sorted(_CPC_DESCRIPTION.items())
|
@@ -129,22 +130,30 @@ class BigPatent(datasets.GeneratorBasedBuilder):
|
|
129 |
|
130 |
def _split_generators(self, dl_manager):
|
131 |
"""Returns SplitGenerators."""
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
return [
|
135 |
datasets.SplitGenerator(
|
136 |
name=split,
|
137 |
-
gen_kwargs={"
|
138 |
)
|
139 |
-
for split in
|
140 |
]
|
141 |
|
142 |
-
def _generate_examples(self,
|
143 |
"""Yields examples."""
|
144 |
-
for
|
145 |
-
|
146 |
-
|
147 |
-
with open(filename, "rb") as fin:
|
148 |
fin = gzip.GzipFile(fileobj=fin)
|
149 |
for row in fin:
|
150 |
json_obj = json.loads(row)
|
|
|
15 |
|
16 |
# Lint as: python3
|
17 |
"""BigPatent Dataset."""
|
|
|
18 |
import gzip
|
19 |
import json
|
20 |
import os
|
|
|
52 |
|
53 |
_LICENSE = "Creative Commons Attribution 4.0 International"
|
54 |
|
55 |
+
_SPLIT_NAMES = {datasets.Split.TRAIN: "train", datasets.Split.VALIDATION: "val", datasets.Split.TEST: "test"}
|
56 |
+
_URL = "data/{version}/{split_name}.zip"
|
|
|
|
|
|
|
|
|
57 |
|
58 |
_DOCUMENT = "description"
|
59 |
_SUMMARY = "abstract"
|
|
|
73 |
# Available versions:
|
74 |
# 1.0.0 lower cased tokenized words.
|
75 |
# 2.0.0 cased raw strings.
|
76 |
+
# 2.1.2 cased raw strings (fixed).
|
|
|
77 |
|
78 |
+
_VERSION = "2.1.2"
|
79 |
|
80 |
|
81 |
class BigPatentConfig(datasets.BuilderConfig):
|
82 |
"""BuilderConfig for BigPatent."""
|
83 |
|
84 |
+
def __init__(self, codes="all", version=_VERSION, **kwargs):
|
85 |
"""BuilderConfig for BigPatent.
|
86 |
Args:
|
87 |
+
codes (str or list, default 'all'): CPC codes. Either 'all' or a combination
|
88 |
+
of {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'y'}.
|
89 |
**kwargs: keyword arguments forwarded to super.
|
90 |
"""
|
91 |
+
if isinstance(codes, str):
|
92 |
+
codes = [codes]
|
93 |
+
name = "+".join(codes)
|
94 |
+
if name == "all":
|
95 |
+
codes = list(_CPC_DESCRIPTION)
|
96 |
+
if version != _VERSION:
|
97 |
+
name = f"{name}-{version}"
|
98 |
+
super().__init__(name=name, version=version, **kwargs)
|
99 |
+
self.codes = codes
|
100 |
|
101 |
|
102 |
class BigPatent(datasets.GeneratorBasedBuilder):
|
103 |
"""BigPatent datasets."""
|
104 |
|
105 |
+
BUILDER_CONFIG_CLASS = BigPatentConfig
|
106 |
BUILDER_CONFIGS = [
|
107 |
BigPatentConfig(
|
108 |
+
codes="all",
|
|
|
109 |
description="Patents under all categories.",
|
110 |
),
|
111 |
] + [
|
112 |
+
BigPatentConfig(
|
113 |
+
codes=k,
|
|
|
114 |
description=f"Patents under Cooperative Patent Classification (CPC) {k}: {v}",
|
115 |
)
|
116 |
for k, v in sorted(_CPC_DESCRIPTION.items())
|
|
|
130 |
|
131 |
def _split_generators(self, dl_manager):
|
132 |
"""Returns SplitGenerators."""
|
133 |
+
urls = {
|
134 |
+
split: _URL.format(version=self.config.version, split_name=split_name)
|
135 |
+
for split, split_name in _SPLIT_NAMES.items()
|
136 |
+
}
|
137 |
+
dl_paths = dl_manager.download_and_extract(urls)
|
138 |
+
paths = {
|
139 |
+
split: [
|
140 |
+
dl_manager.iter_files(os.path.join(dl_paths[split], split_name, code)) for code in self.config.codes
|
141 |
+
]
|
142 |
+
for split, split_name in _SPLIT_NAMES.items()
|
143 |
+
}
|
144 |
return [
|
145 |
datasets.SplitGenerator(
|
146 |
name=split,
|
147 |
+
gen_kwargs={"paths": paths[split]},
|
148 |
)
|
149 |
+
for split in _SPLIT_NAMES
|
150 |
]
|
151 |
|
152 |
+
def _generate_examples(self, paths=None):
|
153 |
"""Yields examples."""
|
154 |
+
for paths_per_code in paths:
|
155 |
+
for path in paths_per_code:
|
156 |
+
with open(path, "rb") as fin:
|
|
|
157 |
fin = gzip.GzipFile(fileobj=fin)
|
158 |
for row in fin:
|
159 |
json_obj = json.loads(row)
|
data/{test.zip → 1.0.0/test.zip}
RENAMED
File without changes
|
data/{train.zip → 1.0.0/train.zip}
RENAMED
File without changes
|
data/{val.zip → 1.0.0/val.zip}
RENAMED
File without changes
|
data/2.1.2/test.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:614821d8d8c92451ba495e0b381f157a0e0b36977a70f2d4cb3ae4b6b706539a
|
3 |
+
size 507619065
|
data/2.1.2/train.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59cae1439b01102faa5b9e1bb3061867ba292a6093cf66ee3d1bc33030d7a91f
|
3 |
+
size 9129045386
|
data/2.1.2/val.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9206de008607095bdb29f405ef9b525565556860d015cbd4261154644b51ce9b
|
3 |
+
size 506259325
|
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"all": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "all", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 23363518650, "num_examples": 1207222, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 1290154487, "num_examples": 67068, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 1296234391, "num_examples": 67072, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 25949907528, "size_in_bytes": 32397129082}, "a": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "a", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3329778447, "num_examples": 174134, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 184116486, "num_examples": 9674, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 185987552, "num_examples": 9675, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 3699882485, "size_in_bytes": 10147104039}, "b": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "b", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2574594655, "num_examples": 161520, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 143029380, "num_examples": 8973, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 140741033, "num_examples": 8974, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 2858365068, "size_in_bytes": 9305586622}, "c": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "c", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2641973267, "num_examples": 101042, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 145441704, "num_examples": 5613, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 149052258, "num_examples": 5614, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 2936467229, "size_in_bytes": 9383688783}, "d": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "d", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 160467163, "num_examples": 10164, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 8667961, "num_examples": 565, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 8713720, "num_examples": 565, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 177848844, "size_in_bytes": 6625070398}, "e": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "e", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 535567259, "num_examples": 34443, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 28549964, "num_examples": 1914, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 29843613, "num_examples": 1914, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 593960836, "size_in_bytes": 7041182390}, "f": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "f", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1297707404, "num_examples": 85568, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 72367466, "num_examples": 4754, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 71676041, "num_examples": 4754, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 1441750911, "size_in_bytes": 7888972465}, "g": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "g", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5571186559, "num_examples": 258935, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 309182447, "num_examples": 14385, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 310624265, "num_examples": 14386, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 6190993271, "size_in_bytes": 12638214825}, "h": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "h", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4988365946, "num_examples": 257019, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 275293153, "num_examples": 14279, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 274505113, "num_examples": 14279, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 5538164212, "size_in_bytes": 11985385766}, "y": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "y", "version": "1.0.0", "splits": {"train": {"name": "train", "num_bytes": 2263877990, "num_examples": 124397, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 123505958, "num_examples": 6911, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 125090828, "num_examples": 6911, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 2512474776, "size_in_bytes": 8959696330}}
|
|
|
1 |
+
{"all": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "all", "version": "2.1.2", "splits": {"train": {"name": "train", "num_bytes": 38367048389, "num_examples": 1207222, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 2115827002, "num_examples": 67068, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 2129505280, "num_examples": 67072, "dataset_name": "big_patent"}}, "download_checksums": {"data/2.1.2/train.zip": {"num_bytes": 9129045386, "checksum": "59cae1439b01102faa5b9e1bb3061867ba292a6093cf66ee3d1bc33030d7a91f"}, "data/2.1.2/val.zip": {"num_bytes": 506259325, "checksum": "9206de008607095bdb29f405ef9b525565556860d015cbd4261154644b51ce9b"}, "data/2.1.2/test.zip": {"num_bytes": 507619065, "checksum": "614821d8d8c92451ba495e0b381f157a0e0b36977a70f2d4cb3ae4b6b706539a"}}, "download_size": 10142923776, "post_processing_size": null, "dataset_size": 42612380671, "size_in_bytes": 52755304447}, "a": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "a", "version": "2.1.2", "splits": {"train": {"name": "train", "num_bytes": 5683460620, "num_examples": 174134, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 313324505, "num_examples": 9674, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 316633277, "num_examples": 9675, "dataset_name": "big_patent"}}, "download_checksums": {"data/2.1.2/train.zip": {"num_bytes": 9129045386, "checksum": "59cae1439b01102faa5b9e1bb3061867ba292a6093cf66ee3d1bc33030d7a91f"}, "data/2.1.2/val.zip": {"num_bytes": 506259325, "checksum": "9206de008607095bdb29f405ef9b525565556860d015cbd4261154644b51ce9b"}, "data/2.1.2/test.zip": {"num_bytes": 507619065, "checksum": "614821d8d8c92451ba495e0b381f157a0e0b36977a70f2d4cb3ae4b6b706539a"}}, "download_size": 10142923776, "post_processing_size": null, "dataset_size": 6313418402, "size_in_bytes": 16456342178}, "b": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "b", "version": "2.1.2", "splits": {"train": {"name": "train", "num_bytes": 4236070976, "num_examples": 161520, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 234425138, "num_examples": 8973, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 231538734, "num_examples": 8974, "dataset_name": "big_patent"}}, "download_checksums": {"data/2.1.2/train.zip": {"num_bytes": 9129045386, "checksum": "59cae1439b01102faa5b9e1bb3061867ba292a6093cf66ee3d1bc33030d7a91f"}, "data/2.1.2/val.zip": {"num_bytes": 506259325, "checksum": "9206de008607095bdb29f405ef9b525565556860d015cbd4261154644b51ce9b"}, "data/2.1.2/test.zip": {"num_bytes": 507619065, "checksum": "614821d8d8c92451ba495e0b381f157a0e0b36977a70f2d4cb3ae4b6b706539a"}}, "download_size": 10142923776, "post_processing_size": null, "dataset_size": 4702034848, "size_in_bytes": 14844958624}, "c": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "c", "version": "2.1.2", "splits": {"train": {"name": "train", "num_bytes": 4506249306, "num_examples": 101042, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 244684775, "num_examples": 5613, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 252566793, "num_examples": 5614, "dataset_name": "big_patent"}}, "download_checksums": {"data/2.1.2/train.zip": {"num_bytes": 9129045386, "checksum": "59cae1439b01102faa5b9e1bb3061867ba292a6093cf66ee3d1bc33030d7a91f"}, "data/2.1.2/val.zip": {"num_bytes": 506259325, "checksum": "9206de008607095bdb29f405ef9b525565556860d015cbd4261154644b51ce9b"}, "data/2.1.2/test.zip": {"num_bytes": 507619065, "checksum": "614821d8d8c92451ba495e0b381f157a0e0b36977a70f2d4cb3ae4b6b706539a"}}, "download_size": 10142923776, "post_processing_size": null, "dataset_size": 5003500874, "size_in_bytes": 15146424650}, "d": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "d", "version": "2.1.2", "splits": {"train": {"name": "train", "num_bytes": 264717412, "num_examples": 10164, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 14560482, "num_examples": 565, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 14403430, "num_examples": 565, "dataset_name": "big_patent"}}, "download_checksums": {"data/2.1.2/train.zip": {"num_bytes": 9129045386, "checksum": "59cae1439b01102faa5b9e1bb3061867ba292a6093cf66ee3d1bc33030d7a91f"}, "data/2.1.2/val.zip": {"num_bytes": 506259325, "checksum": "9206de008607095bdb29f405ef9b525565556860d015cbd4261154644b51ce9b"}, "data/2.1.2/test.zip": {"num_bytes": 507619065, "checksum": "614821d8d8c92451ba495e0b381f157a0e0b36977a70f2d4cb3ae4b6b706539a"}}, "download_size": 10142923776, "post_processing_size": null, "dataset_size": 293681324, "size_in_bytes": 10436605100}, "e": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "e", "version": "2.1.2", "splits": {"train": {"name": "train", "num_bytes": 881101433, "num_examples": 34443, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 48646158, "num_examples": 1914, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 48586429, "num_examples": 1914, "dataset_name": "big_patent"}}, "download_checksums": {"data/2.1.2/train.zip": {"num_bytes": 9129045386, "checksum": "59cae1439b01102faa5b9e1bb3061867ba292a6093cf66ee3d1bc33030d7a91f"}, "data/2.1.2/val.zip": {"num_bytes": 506259325, "checksum": "9206de008607095bdb29f405ef9b525565556860d015cbd4261154644b51ce9b"}, "data/2.1.2/test.zip": {"num_bytes": 507619065, "checksum": "614821d8d8c92451ba495e0b381f157a0e0b36977a70f2d4cb3ae4b6b706539a"}}, "download_size": 10142923776, "post_processing_size": null, "dataset_size": 978334020, "size_in_bytes": 11121257796}, "f": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "f", "version": "2.1.2", "splits": {"train": {"name": "train", "num_bytes": 2146383473, "num_examples": 85568, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 119632631, "num_examples": 4754, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 119596303, "num_examples": 4754, "dataset_name": "big_patent"}}, "download_checksums": {"data/2.1.2/train.zip": {"num_bytes": 9129045386, "checksum": "59cae1439b01102faa5b9e1bb3061867ba292a6093cf66ee3d1bc33030d7a91f"}, "data/2.1.2/val.zip": {"num_bytes": 506259325, "checksum": "9206de008607095bdb29f405ef9b525565556860d015cbd4261154644b51ce9b"}, "data/2.1.2/test.zip": {"num_bytes": 507619065, "checksum": "614821d8d8c92451ba495e0b381f157a0e0b36977a70f2d4cb3ae4b6b706539a"}}, "download_size": 10142923776, "post_processing_size": null, "dataset_size": 2385612407, "size_in_bytes": 12528536183}, "g": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "g", "version": "2.1.2", "splits": {"train": {"name": "train", "num_bytes": 8877854206, "num_examples": 258935, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 492581177, "num_examples": 14385, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 496324853, "num_examples": 14386, "dataset_name": "big_patent"}}, "download_checksums": {"data/2.1.2/train.zip": {"num_bytes": 9129045386, "checksum": "59cae1439b01102faa5b9e1bb3061867ba292a6093cf66ee3d1bc33030d7a91f"}, "data/2.1.2/val.zip": {"num_bytes": 506259325, "checksum": "9206de008607095bdb29f405ef9b525565556860d015cbd4261154644b51ce9b"}, "data/2.1.2/test.zip": {"num_bytes": 507619065, "checksum": "614821d8d8c92451ba495e0b381f157a0e0b36977a70f2d4cb3ae4b6b706539a"}}, "download_size": 10142923776, "post_processing_size": null, "dataset_size": 9866760236, "size_in_bytes": 20009684012}, "h": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "h", "version": "2.1.2", "splits": {"train": {"name": "train", "num_bytes": 8075621958, "num_examples": 257019, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 447602356, "num_examples": 14279, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 445460513, "num_examples": 14279, "dataset_name": "big_patent"}}, "download_checksums": {"data/2.1.2/train.zip": {"num_bytes": 9129045386, "checksum": "59cae1439b01102faa5b9e1bb3061867ba292a6093cf66ee3d1bc33030d7a91f"}, "data/2.1.2/val.zip": {"num_bytes": 506259325, "checksum": "9206de008607095bdb29f405ef9b525565556860d015cbd4261154644b51ce9b"}, "data/2.1.2/test.zip": {"num_bytes": 507619065, "checksum": "614821d8d8c92451ba495e0b381f157a0e0b36977a70f2d4cb3ae4b6b706539a"}}, "download_size": 10142923776, "post_processing_size": null, "dataset_size": 8968684827, "size_in_bytes": 19111608603}, "y": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "Creative Commons Attribution 4.0 International", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "y", "version": "2.1.2", "splits": {"train": {"name": "train", "num_bytes": 3695589005, "num_examples": 124397, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 200369780, "num_examples": 6911, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 204394948, "num_examples": 6911, "dataset_name": "big_patent"}}, "download_checksums": {"data/2.1.2/train.zip": {"num_bytes": 9129045386, "checksum": "59cae1439b01102faa5b9e1bb3061867ba292a6093cf66ee3d1bc33030d7a91f"}, "data/2.1.2/val.zip": {"num_bytes": 506259325, "checksum": "9206de008607095bdb29f405ef9b525565556860d015cbd4261154644b51ce9b"}, "data/2.1.2/test.zip": {"num_bytes": 507619065, "checksum": "614821d8d8c92451ba495e0b381f157a0e0b36977a70f2d4cb3ae4b6b706539a"}}, "download_size": 10142923776, "post_processing_size": null, "dataset_size": 4100353733, "size_in_bytes": 14243277509}}
|