Jiwonny29 commited on
Commit
a246e89
1 Parent(s): 318a725

Create test_dataset.py

Browse files
Files changed (1) hide show
  1. test_dataset.py +159 -0
test_dataset.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def _info(self):
2
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
3
+ if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
4
+ features = datasets.Features(
5
+ {
6
+ "year": datasets.Value("int32"),
7
+ "locationabbr": datasets.Value("string"),
8
+ "locationdesc": datasets.Value("string"),
9
+ "geolocation": datasets.Features({"latitude": datasets.Value("float32"), "longitude": datasets.Value("float32")}),
10
+ "disease_type": datasets.Value("int32"),
11
+ "data_value_type": datasets.Value("int32"),
12
+ "data_value": datasets.Value("float32"),
13
+ "break_out_category": datasets.Value("string"),
14
+ "break_out_details": datasets.Value("string"),
15
+ "break_out_type": datasets.Value("int32"),
16
+ "life_expectancy": datasets.Value("float32")
17
+ # These are the features of your dataset like images, labels ...
18
+ }
19
+ )
20
+ return datasets.DatasetInfo(
21
+ # This is the description that will appear on the datasets page.
22
+ description=_DESCRIPTION,
23
+ # This defines the different columns of the dataset and their types
24
+ features=features, # Here we define them above because they are different between the two configurations
25
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
26
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
27
+ # supervised_keys=("sentence", "label"),
28
+ # Homepage of the dataset for documentation
29
+ homepage=_HOMEPAGE,
30
+ # License for the dataset if available
31
+ license=_LICENSE,
32
+ # Citation for the dataset
33
+ citation=_CITATION,
34
+ )
35
+
36
+ def _split_generators(self, dl_manager):
37
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
38
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
39
+
40
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
41
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
42
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
43
+ dl_paths = dl_manager.download_and_extract({
44
+ 'train_csv': 'https://drive.google.com/file/d/1eChYmZ3RMq1v-ek1u6DD2m_dGIrz3sbi/view?usp=sharing'
45
+ })
46
+ return [
47
+ datasets.SplitGenerator(
48
+ name=datasets.Split.TRAIN,
49
+ gen_kwargs={
50
+ "csvpath": dl_paths['train_csv'],
51
+ },
52
+ ),
53
+ ]
54
+
55
+ def _generate_examples(self, csvpath):
56
+ with open(csvpath, encoding="utf-8") as f:
57
+ reader = csv.DictReader(f)
58
+
59
+ for key, row in enumerate(reader):
60
+ yield key, {
61
+ "year": int(row["Year"]),
62
+ "location_abbr": row["LocationAbbr"],
63
+ "location_desc": row["LocationDesc"],
64
+ "geolocation": {
65
+ "latitude": float(row["latitude"]),
66
+ "longitude": float(row["longitude"])
67
+ },
68
+ "disease_type": int(row["Disease_Type"]),
69
+ "data_value_type": int(row["Data_Value_Type"]),
70
+ "data_value": float(row["Data_Value"]),
71
+ "break_out_category": row["Break_Out_Category"],
72
+ "break_out_details": row["Break_Out_Details"],
73
+ "break_out_type": int(row["Break_Out_Type"]),
74
+ "life_expectancy": float(row["Life_Expectancy"]) if row["Life_Expectancy"] else None
75
+ }
76
+
77
+ @staticmethod
78
+ def preprocess_data(filepath):
79
+ data = pd.read_csv("/content/drive/MyDrive/National_Vital_Statistics_System__NVSS__-_National_Cardiovascular_Disease_Surveillance_Data_20240129.csv")
80
+ data = data[['YearStart', 'LocationAbbr', 'LocationDesc', 'Geolocation', 'Topic', 'Question', 'Data_Value_Type', 'Data_Value', 'Data_Value_Alt',
81
+ 'Low_Confidence_Limit', 'High_Confidence_Limit', 'Break_Out_Category', 'Break_Out']]
82
+ def convert_to_tuple(geo_str):
83
+ if isinstance(geo_str, str):
84
+ geo_str = geo_str.replace('POINT (', '').replace(')', '')
85
+ lon, lat = map(float, geo_str.split())
86
+ return (lon, lat)
87
+ else:
88
+ return geo_str
89
+
90
+ data['Geolocation'] = data['Geolocation'].apply(convert_to_tuple)
91
+ disease_columns = [
92
+ 'Major cardiovascular disease mortality rate among US adults (18+); NVSS',
93
+ 'Diseases of the heart (heart disease) mortality rate among US adults (18+); NVSS',
94
+ 'Acute myocardial infarction (heart attack) mortality rate among US adults (18+); NVSS',
95
+ 'Coronary heart disease mortality rate among US adults (18+); NVSS',
96
+ 'Heart failure mortality rate among US adults (18+); NVSS',
97
+ 'Cerebrovascular disease (stroke) mortality rate among US adults (18+); NVSS',
98
+ 'Ischemic stroke mortality rate among US adults (18+); NVSS',
99
+ 'Hemorrhagic stroke mortality rate among US adults (18+); NVSS'
100
+ ]
101
+
102
+ disease_column_mapping = {column_name: index for index, column_name in enumerate(disease_columns)}
103
+ data['Question'] = data['Question'].apply(lambda x: disease_column_mapping.get(x, -1))
104
+
105
+ sex_columns = ['Male', 'Female']
106
+ sex_column_mapping = {column_name: index + 1 for index, column_name in enumerate(sex_columns)}
107
+
108
+ age_columns = ['18-24', '25-44', '45-64', '65+']
109
+ age_column_mapping = {column_name: index + 1 for index, column_name in enumerate(age_columns)}
110
+
111
+ race_columns = ['Non-Hispanic White', 'Non-Hispanic Black', 'Hispanic', 'Other']
112
+ race_column_mapping = {column_name: index + 1 for index, column_name in enumerate(race_columns)}
113
+
114
+ def map_break_out_category(value):
115
+ if value in sex_column_mapping:
116
+ return sex_column_mapping[value]
117
+ elif value in age_column_mapping:
118
+ return age_column_mapping[value]
119
+ elif value in race_column_mapping:
120
+ return race_column_mapping[value]
121
+ else:
122
+ return value
123
+
124
+ data['Break_Out_Type'] = data['Break_Out'].apply(map_break_out_category)
125
+ data.drop(columns=['Topic', 'Low_Confidence_Limit', 'High_Confidence_Limit', 'Data_Value_Alt'], axis=1, inplace=True)
126
+ data['Data_Value_Type'] = data['Data_Value_Type'].apply(lambda x: 1 if x == 'Age-Standardized' else 0)
127
+ data.rename(columns={'Question':'Disease_Type', 'YearStart':'Year', 'Break_Out':'Break_Out_Details'}, inplace=True)
128
+ data['Break_Out_Type'] = data['Break_Out_Type'].replace('Overall', 0)
129
+
130
+ lt2000 = pd.read_csv("https://drive.google.com/file/d/1ktRNl7jg0Z83rkymD9gcsGLdVqVaFtd-/view?usp=drive_link")
131
+ lt2000 = lt2000[(lt2000['race_name'] == 'Total') & (lt2000['age_name'] == '<1 year')]
132
+ lt2000 = lt2000[['location_name', 'val']]
133
+ lt2000.rename(columns={'val':'Life_Expectancy'}, inplace=True)
134
+
135
+ lt2005 = pd.read_csv("https://drive.google.com/file/d/1xZqeOgj32-BkOhDTZVc4k_tp1ddnOEh7/view?usp=drive_link")
136
+ lt2005 = lt2005[(lt2005['race_name'] == 'Total') & (lt2005['age_name'] == '<1 year')]
137
+ lt2005 = lt2005[['location_name', 'val']]
138
+ lt2005.rename(columns={'val':'Life_Expectancy'}, inplace=True)
139
+
140
+ lt2010 = pd.read_csv("https://drive.google.com/file/d/1ItqHBuuUa38PVytfahaAV8NWwbhHMMg8/view?usp=drive_link")
141
+ lt2010 = lt2010[(lt2010['race_name'] == 'Total') & (lt2010['age_name'] == '<1 year')]
142
+ lt2010 = lt2010[['location_name', 'val']]
143
+ lt2010.rename(columns={'val':'Life_Expectancy'}, inplace=True)
144
+
145
+ lt2015 = pd.read_csv("https://drive.google.com/file/d/1rOgQY1RQiry2ionTKM_UWgT8cYD2E0vX/view?usp=drive_link")
146
+ lt2015 = lt2015[(lt2015['race_name'] == 'Total') & (lt2015['age_name'] == '<1 year')]
147
+ lt2015 = lt2015[['location_name', 'val']]
148
+ lt2015.rename(columns={'val':'Life_Expectancy'}, inplace=True)
149
+
150
+ lt_data = pd.concat([lt2000, lt2005, lt2010, lt2015])
151
+ lt_data.drop_duplicates(subset=['location_name'], inplace=True)
152
+
153
+ data2 = pd.merge(data, lt_data, how='inner', left_on='LocationDesc', right_on='location_name')
154
+ data2.drop(columns=['location_name'], axis=1, inplace=True)
155
+ data2 = data2[(data2['Break_Out_Details'] != '75+') & (data2['Break_Out_Details'] != '35+')]
156
+ data2.rename(columns={'Question':'Disease_Type'}, inplace=True)
157
+ data2['Life_Expectancy'] = np.where(data2['Break_Out_Type'] == 0, data2['Life_Expectancy'], np.nan)
158
+ processed_filepath = '/content/drive/MyDrive/my_processed_data.csv'
159
+ return processed_filepath