Datasets:
Tasks:
Text Classification
Languages:
Portuguese
Size:
10K<n<100K
ArXiv:
Tags:
hate-speech-detection
License:
File size: 7,494 Bytes
07e4878 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Toxic/Abusive Tweets Multilabel Classification Dataset for Brazilian Portuguese."""
import os
import pandas as pd
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{DBLP:journals/corr/abs-2010-04543,
author = {Joao Augusto Leite and
Diego F. Silva and
Kalina Bontcheva and
Carolina Scarton},
title = {Toxic Language Detection in Social Media for Brazilian Portuguese:
New Dataset and Multilingual Analysis},
journal = {CoRR},
volume = {abs/2010.04543},
year = {2020},
url = {https://arxiv.org/abs/2010.04543},
eprinttype = {arXiv},
eprint = {2010.04543},
timestamp = {Tue, 15 Dec 2020 16:10:16 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2010-04543.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """\
ToLD-Br is the biggest dataset for toxic tweets in Brazilian Portuguese, crowdsourced
by 42 annotators selected from a pool of 129 volunteers. Annotators were selected aiming
to create a plural group in terms of demographics (ethnicity, sexual orientation, age, gender).
Each tweet was labeled by three annotators in 6 possible categories:
LGBTQ+phobia,Xenophobia, Obscene, Insult, Misogyny and Racism.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://github.com/JAugusto97/ToLD-Br"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "https://github.com/JAugusto97/ToLD-Br/blob/main/LICENSE_ToLD-Br.txt "
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"multilabel": "https://raw.githubusercontent.com/JAugusto97/ToLD-Br/main/ToLD-BR.csv",
"binary": "https://github.com/JAugusto97/ToLD-Br/raw/main/experiments/data/1annotator.zip",
}
class ToldBr(datasets.GeneratorBasedBuilder):
"""Toxic/Abusive Tweets Classification Dataset for Brazilian Portuguese."""
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="multilabel",
version=VERSION,
description="""
Full multilabel dataset with target values ranging
from 0 to 3 representing the votes from each annotator.
""",
),
datasets.BuilderConfig(
name="binary",
version=VERSION,
description="""
Binary classification dataset version separated in train, dev and test test.
A text is considered toxic if at least one of the multilabel classes were labeled
by at least one annotator.
""",
),
]
DEFAULT_CONFIG_NAME = "binary"
def _info(self):
if self.config.name == "binary":
features = datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.ClassLabel(names=["not-toxic", "toxic"]),
}
)
else:
features = datasets.Features(
{
"text": datasets.Value("string"),
"homophobia": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]),
"obscene": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]),
"insult": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]),
"racism": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]),
"misogyny": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]),
"xenophobia": datasets.ClassLabel(names=["zero_votes", "one_vote", "two_votes", "three_votes"]),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
)
def _split_generators(self, dl_manager):
urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(urls)
if self.config.name == "binary":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": os.path.join(data_dir, "1annotator/ptbr_train_1annotator.csv")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": os.path.join(data_dir, "1annotator/ptbr_test_1annotator.csv")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": os.path.join(data_dir, "1annotator/ptbr_validation_1annotator.csv")},
),
]
else:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir),
},
)
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath, engine="python")
for key, row in enumerate(df.itertuples()):
if self.config.name == "multilabel":
yield key, {
"text": row.text,
"homophobia": int(float(row.homophobia)),
"obscene": int(float(row.obscene)),
"insult": int(float(row.insult)),
"racism": int(float(row.racism)),
"misogyny": int(float(row.misogyny)),
"xenophobia": int(float(row.xenophobia)),
}
else:
yield key, {"text": row.text, "label": int(row.toxic)}
|