add working version
Browse files
Caltech-101.py
CHANGED
@@ -18,9 +18,11 @@
|
|
18 |
import csv
|
19 |
import json
|
20 |
import os
|
|
|
21 |
|
22 |
import datasets
|
23 |
from datasets.tasks import ImageClassification
|
|
|
24 |
|
25 |
_CITATION = """\
|
26 |
@article{FeiFei2004LearningGV,
|
@@ -43,8 +45,8 @@ _HOMEPAGE = "https://data.caltech.edu/records/20086"
|
|
43 |
|
44 |
_LICENSE = "CC BY 4.0"
|
45 |
|
46 |
-
_DATA_URL = "brand_new_data/caltech-101.zip"
|
47 |
-
|
48 |
|
49 |
_NAMES = [
|
50 |
"accordion",
|
@@ -164,24 +166,21 @@ class Caltech101(datasets.GeneratorBasedBuilder):
|
|
164 |
description=_DESCRIPTION,
|
165 |
features=datasets.Features(
|
166 |
{
|
167 |
-
"
|
168 |
"label": datasets.features.ClassLabel(names=_NAMES),
|
169 |
}
|
170 |
),
|
171 |
-
supervised_keys=("
|
172 |
homepage=_HOMEPAGE,
|
173 |
license=_LICENSE,
|
174 |
citation=_CITATION,
|
175 |
task_templates=ImageClassification(
|
176 |
-
image_column="
|
177 |
),
|
178 |
)
|
179 |
|
180 |
def _split_generators(self, dl_manager):
|
181 |
-
# ----- Work in progress here -----
|
182 |
data_dir = dl_manager.download_and_extract(_DATA_URL)
|
183 |
-
files = dl_manager.iter_files(data_dir)
|
184 |
-
# ---------------------------------
|
185 |
return [
|
186 |
datasets.SplitGenerator(
|
187 |
name=datasets.Split.TRAIN,
|
@@ -203,5 +202,32 @@ class Caltech101(datasets.GeneratorBasedBuilder):
|
|
203 |
|
204 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
205 |
def _generate_examples(self, filepath, split):
|
206 |
-
#
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
import csv
|
19 |
import json
|
20 |
import os
|
21 |
+
from pathlib import Path
|
22 |
|
23 |
import datasets
|
24 |
from datasets.tasks import ImageClassification
|
25 |
+
import numpy as np
|
26 |
|
27 |
_CITATION = """\
|
28 |
@article{FeiFei2004LearningGV,
|
|
|
45 |
|
46 |
_LICENSE = "CC BY 4.0"
|
47 |
|
48 |
+
# _DATA_URL = "brand_new_data/caltech-101.zip"
|
49 |
+
_DATA_URL = "brand_new_data/caltech-101/101_ObjectCategories.tar.gz"
|
50 |
|
51 |
_NAMES = [
|
52 |
"accordion",
|
|
|
166 |
description=_DESCRIPTION,
|
167 |
features=datasets.Features(
|
168 |
{
|
169 |
+
"image": datasets.Image(),
|
170 |
"label": datasets.features.ClassLabel(names=_NAMES),
|
171 |
}
|
172 |
),
|
173 |
+
supervised_keys=("image", "label"),
|
174 |
homepage=_HOMEPAGE,
|
175 |
license=_LICENSE,
|
176 |
citation=_CITATION,
|
177 |
task_templates=ImageClassification(
|
178 |
+
image_column="image", label_column="label"
|
179 |
),
|
180 |
)
|
181 |
|
182 |
def _split_generators(self, dl_manager):
|
|
|
183 |
data_dir = dl_manager.download_and_extract(_DATA_URL)
|
|
|
|
|
184 |
return [
|
185 |
datasets.SplitGenerator(
|
186 |
name=datasets.Split.TRAIN,
|
|
|
202 |
|
203 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
204 |
def _generate_examples(self, filepath, split):
|
205 |
+
# Same stratagy as the one proposed in TF datasets
|
206 |
+
is_train_split = (split == "train")
|
207 |
+
data_dir = Path(filepath) / "101_ObjectCategories"
|
208 |
+
# Sets random seed so the random partitioning of files is the same when
|
209 |
+
# called for the train and test splits.
|
210 |
+
numpy_original_state = np.random.get_state()
|
211 |
+
np.random.seed(1234)
|
212 |
+
|
213 |
+
for class_dir in data_dir.iterdir():
|
214 |
+
fnames = [image_path for image_path in class_dir.iterdir() if image_path.name.endswith(".jpg")]
|
215 |
+
assert [image_path for image_path in class_dir.iterdir() if not image_path.name.endswith(".jpg")] == []
|
216 |
+
# _TRAIN_POINTS_PER_CLASS datapoints are sampled for the train split,
|
217 |
+
# the others constitute the test split.
|
218 |
+
if _TRAIN_POINTS_PER_CLASS > len(fnames):
|
219 |
+
raise ValueError("Fewer than {} ({}) points in class {}".format(
|
220 |
+
_TRAIN_POINTS_PER_CLASS, len(fnames), class_dir.name))
|
221 |
+
train_fnames = np.random.choice(
|
222 |
+
fnames, _TRAIN_POINTS_PER_CLASS, replace=False)
|
223 |
+
test_fnames = set(fnames).difference(train_fnames)
|
224 |
+
fnames_to_emit = train_fnames if is_train_split else test_fnames
|
225 |
+
|
226 |
+
for image_file in fnames_to_emit:
|
227 |
+
record = {
|
228 |
+
"image": str(image_file),
|
229 |
+
"label": class_dir.name.lower(),
|
230 |
+
}
|
231 |
+
yield "%s/%s" % (class_dir.name.lower(), image_file), record
|
232 |
+
# Resets the seeds to their previous states.
|
233 |
+
np.random.set_state(numpy_original_state)
|
brand_new_data/caltech-101/101_ObjectCategories.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af6ece2f339791ca20f855943d8b55dd60892c0a25105fcd631ee3d6430f9926
|
3 |
+
size 131740031
|
brand_new_data/caltech-101/101_ObjectCategories.tar.gz.lock
ADDED
File without changes
|
brand_new_data/caltech-101/Annotations.tar
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1717f4e10aa837b05956e3f4c94456527b143eec0d95e935028b30aff40663d8
|
3 |
+
size 14028800
|
brand_new_data/caltech-101/show_annotation.m
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
function show_annotation(imgfile, annotation_file);
|
2 |
+
%%
|
3 |
+
%% imgfile: string
|
4 |
+
%% annotation_file: string
|
5 |
+
%%
|
6 |
+
%% written by by Fei-Fei Li - November 2004
|
7 |
+
%%
|
8 |
+
|
9 |
+
IMTYPE = 'jpg';
|
10 |
+
GUIDELINE_MODE = 1;
|
11 |
+
%% Parameters
|
12 |
+
%label_abbrev = {'LE', 'RE', 'LN', 'NB', 'RN', 'LM', 'RM'};
|
13 |
+
LARGEFONT = 28;
|
14 |
+
MEDFONT = 18;
|
15 |
+
BIG_WINDOW = get(0,'ScreenSize');
|
16 |
+
SMALL_WINDOW = [100 100 512 480];
|
17 |
+
|
18 |
+
%% load the annotated data
|
19 |
+
load(annotation_file, 'box_coord', 'obj_contour');
|
20 |
+
|
21 |
+
%% Read and display image
|
22 |
+
ima = imread(imgfile);
|
23 |
+
ff=figure(1); clf; imagesc(ima); axis image; axis ij; hold on;
|
24 |
+
% black and white images
|
25 |
+
if length(size(ima))<3
|
26 |
+
colormap(gray);
|
27 |
+
end
|
28 |
+
set(ff,'Position',SMALL_WINDOW);
|
29 |
+
|
30 |
+
%% show box
|
31 |
+
box_handle = rectangle('position', [box_coord(3), box_coord(1), box_coord(4)-box_coord(3), box_coord(2)-box_coord(1)]);
|
32 |
+
set(box_handle, 'edgecolor','y', 'linewidth',5);
|
33 |
+
|
34 |
+
%% show contour
|
35 |
+
for cc = 1:size(obj_contour,2)
|
36 |
+
if cc < size(obj_contour,2)
|
37 |
+
plot([obj_contour(1,cc), obj_contour(1,cc+1)]+box_coord(3), [obj_contour(2,cc), obj_contour(2,cc+1)]+box_coord(1), 'r','linewidth',4);
|
38 |
+
else
|
39 |
+
plot([obj_contour(1,cc), obj_contour(1,1)]+box_coord(3), [obj_contour(2,cc), obj_contour(2,1)]+box_coord(1), 'r','linewidth',4);
|
40 |
+
end
|
41 |
+
end
|
42 |
+
|
43 |
+
title(imgfile);
|
44 |
+
|