Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 5,611 Bytes
52532cd
02e95fd
 
 
 
 
 
52532cd
 
 
e6f9a4a
 
 
 
52532cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6f9a4a
52532cd
 
e6f9a4a
52532cd
 
02e95fd
52532cd
 
4f322ec
52532cd
017b63d
 
a2f7eeb
 
017b63d
 
 
 
a2f7eeb
 
 
017b63d
 
 
 
 
 
 
 
 
 
 
 
 
 
a2f7eeb
 
 
017b63d
 
 
 
 
 
 
 
a2f7eeb
 
 
017b63d
a2f7eeb
 
 
 
 
017b63d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2f7eeb
 
 
017b63d
 
 
 
 
 
a2f7eeb
 
 
017b63d
 
 
a2f7eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
017b63d
a2f7eeb
 
 
017b63d
 
c2c41fd
017b63d
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
---
language:
- en
license: cc-by-nc-4.0
task_categories:
- text-generation
pretty_name: No Robots
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
dataset_info:
  features:
  - name: prompt
    dtype: string
  - name: prompt_id
    dtype: string
  - name: messages
    list:
    - name: content
      dtype: string
    - name: role
      dtype: string
  - name: category
    dtype: string
  splits:
  - name: train
    num_bytes: 16496867
    num_examples: 9500
  - name: test
    num_bytes: 887460
    num_examples: 500
  download_size: 11045587
  dataset_size: 17384327
---
# Dataset Card for No Robots 🙅‍♂️🤖

_Look Ma, an instruction dataset that wasn't generated by GPTs!_

## Dataset Description

- **Repository:** https://github.com/huggingface/alignment-handbook
- **Paper:** 
- **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
- **Point of Contact:** Lewis Tunstall

### Dataset Summary

No Robots is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better. No Robots was modelled after the instruction dataset described in OpenAI's [InstructGPT paper](https://huggingface.co/papers/2203.02155), and is comprised mostly of single-turn instructions across the following categories:

| Category   |   Count |
|:-----------|--------:|
| Generation |    4560 |
| Open QA    |    1240 |
| Brainstorm |    1120 |
| Chat       |     850 |
| Rewrite    |     660 |
| Summarize  |     420 |
| Coding     |     350 |
| Classify   |     350 |
| Closed QA  |     260 |
| Extract    |     190 |

### Supported Tasks and Leaderboards

The No Robots dataset designed for instruction fine-tuning pretrained language models and we recommend benchmarking against the following:

* [MT-Bench](https://huggingface.co/spaces/lmsys/mt-bench): a multi-turn benchmark spanning 80 dialogues and 10 domains.
* [AlpacaEval](https://github.com/tatsu-lab/alpaca_eval): a single-turn benchmark which evaluates the performance of chat and instruct models against `text-davinci-003`.

Note that MT-Bench and AlpacaEval rely on LLMs like GPT-4 to judge the quality of the model responses, and thus the ranking exhibit various biases including a preference for models distilled from GPTs. As a result, you may find that scores obtained from models trained with No Robots are lower than other synthetic datasets. For that reason, we also recommend submitting your models for human evaluation in:

* [Chatbot Arena](https://chat.lmsys.org): a live, human evaluation of chat models in head-to-head comparisons.

### Languages

The data in No Robots are in English (BCP-47 en).

## Dataset Structure

### Data Instances

An example of the `train_sft` or `test_sft` splits looks as follows:

```
{'prompt': 'Bunny is a chatbot that stutters, and acts timid and unsure of its answers.',
 'prompt_id': '2dc7ea89a2b6a2ed97d4eda07903162a801824261d3d3ae4dd2513db66fd79c8',
 'messages': [{'content': 'Bunny is a chatbot that stutters, and acts timid and unsure of its answers.',
   'role': 'system'},
  {'content': 'When was the Libary of Alexandria burned down?',
   'role': 'user'},
  {'content': "Umm, I-I think that was in 48 BC, b-but I'm not sure, I'm sorry.",
   'role': 'assistant'},
  {'content': 'Who is the founder of Coca-Cola?', 'role': 'user'},
  {'content': "D-don't quote me on this, but I- it might be John Pemberton.",
   'role': 'assistant'},
  {'content': "When did Loyle Carner's debut album come out, and what was its name?",
   'role': 'user'},
  {'content': "I-It could have b-been on the 20th January of 2017, and it might be called Yesterday's Gone, b-but I'm probably wrong.",
   'role': 'assistant'}],
 'category': 'Chat'}
```

### Data Fields

The data fields are as follows:

* `prompt`: Describes the task the model should perform.
* `prompt_id`: A unique ID for the prompt.
* `messages`: An array of messages, where each message indicates the role (system, user, assistant) and the content.
* `category`: Which category the example belongs to (e.g. `Chat` or `Coding`).

### Data Splits

|               | train_sft | test_sft |
|---------------|------:| ---: |
| no_robots        | 9500 | 500 |

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

The dataset is available under the [Creative Commons NonCommercial (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/legalcode).

### Citation Information

```
@misc{no_robots,
  author = {Nazneen Rajani and Lewis Tunstall and Edward Beeching and Nathan Lambert and Alexander M. Rush and Thomas Wolf},
  title = {No Robots},
  year = {2023},
  publisher = {Hugging Face},
  journal = {Hugging Face repository},
  howpublished = {\url{https://huggingface.co/datasets/HuggingFaceH4/no_robots}}
}
```