zhongdongy
commited on
Commit
•
63c39dc
1
Parent(s):
a7ce7fd
deepspeed-flan-t5-summarization-cn done (#57)
Browse files- deepseed-flan-t5-summarization-cn done (709ecdad93bd513af718fecd6d5c719607fe6648)
deepseed-flan-t5-summarization-cn.ipynb
ADDED
@@ -0,0 +1,498 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"attachments": {},
|
5 |
+
"cell_type": "markdown",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# 使用 DeepSpeed 和 Hugging Face Transformer 微调 FLAN-T5 XL/XXL\n",
|
9 |
+
"\n",
|
10 |
+
"[Scaling Instruction-Finetuned Language Models](https://arxiv.org/pdf/2210.11416.pdf) 论文发布了 FLAN-T5 模型,它是 T5 模型的增强版。FLAN-T5 由很多各种各样的任务微调而得,因此,简单来讲,它就是个方方面面都更优的 T5 模型。相同参数量的条件下,FLAN-T5 的性能相比 T5 而言有两位数的提高。Google 在 Hugging Face 上开源了 [5 个 FLAN-T5 的 checkpoints](https://huggingface.co/models?other=arxiv:2210.11416),参数量范围从 8000 万 到 110 亿。\n",
|
11 |
+
"\n",
|
12 |
+
"在之前的一篇博文中,我们已经学习了如何 [针对聊天对话数据摘要生成任务微调 FLAN-T5](https://www.philschmid.de/fine-tune-flan-t5),那时我们使用的是 [Base (250M参数)](https://huggingface.co/google/flan-t5-base)模型。本文,我们将研究如何将训练从 Base 扩展到 [XL (30 亿参数)](https://huggingface.co/google/flan-t5-xl) 或 [XXL (110 亿参数)](https://huggingface.co/google/flan-t5-xxl)。\n",
|
13 |
+
"\n",
|
14 |
+
"这意味着我们将学习如何利用模型并行、多 GPU 以及 [DeepSpeed ZeRO](https://www.deepspeed.ai/tutorials/zero/) 来微调 FLAN-T5 XL 和 XXL。\n",
|
15 |
+
"\n",
|
16 |
+
"除了作为教程的部分之外,我们还跑了一系列实验,这些实验数据可以帮助你选择正确的硬件设置。你可以在*结果和实验*部分找到详细信息。"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": 1,
|
22 |
+
"metadata": {},
|
23 |
+
"outputs": [],
|
24 |
+
"source": [
|
25 |
+
"# install git lfs for pushing artifacts\n",
|
26 |
+
"!sudo apt install git-lfs\n",
|
27 |
+
"# install torch with the correct cuda version, check nvcc --version\n",
|
28 |
+
"!pip install torch --extra-index-url https://download.pytorch.org/whl/cu116 --upgrade\n",
|
29 |
+
"# install Hugging Face Libraries\n",
|
30 |
+
"!pip install \"transformers==4.26.0\" \"datasets==2.9.0\" \"accelerate==0.16.0\" \"evaluate==0.4.0\" --upgrade\n",
|
31 |
+
"# install deepspeed and ninja for jit compilations of kernels\n",
|
32 |
+
"!pip install \"deepspeed==0.8.0\" ninja --upgrade\n",
|
33 |
+
"# install additional dependencies needed for training\n",
|
34 |
+
"!pip install rouge-score nltk py7zr tensorboard"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"attachments": {},
|
39 |
+
"cell_type": "markdown",
|
40 |
+
"metadata": {},
|
41 |
+
"source": [
|
42 |
+
"# 处理数据集"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"attachments": {},
|
47 |
+
"cell_type": "markdown",
|
48 |
+
"metadata": {},
|
49 |
+
"source": [
|
50 |
+
"与[针对聊天对话的摘要生成任务微调 FLAN-T5](https://www.philschmid.de/fine-tune-flan-t5)一文中类似,我们需要先准备一个用于微调的数据集。本文,我们将在 [CNN Dailymail 数据集](https://huggingface.co/datasets/cnn_dailymail) 上微调 [FLAN-T5-XXL](https://huggingface.co/google/flan-t5-xxl)。我们不会赘述如何生成数据集,如果你想了解数据集生成的详细步骤,请参阅[上一篇文章](https://www.philschmid.de/fine-tune-flan-t5)。\n",
|
51 |
+
"\n",
|
52 |
+
"我们定义了一些参数,本文的示例都会基于这些参数,但你可以根据实际需要进行调整。"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": 1,
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [],
|
60 |
+
"source": [
|
61 |
+
"# 实验配置\n",
|
62 |
+
"model_id = \"google/flan-t5-xxl\" # Hugging Face 模型 Id\n",
|
63 |
+
"dataset_id = \"cnn_dailymail\" # Hugging Face 数据集 Id\n",
|
64 |
+
"dataset_config = \"3.0.0\" # 数据集版本\n",
|
65 |
+
"save_dataset_path = \"data\" # 存放处理后数据的本地路径\n",
|
66 |
+
"text_column = \"article\" # 输入文本所属列\n",
|
67 |
+
"summary_column = \"highlights\" # 输出文本所属列\n",
|
68 |
+
"# 定制指令提示格式\n",
|
69 |
+
"prompt_template = f\"Summarize the following news article:\\n{{input}}\\nSummary:\\n\""
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"attachments": {},
|
74 |
+
"cell_type": "markdown",
|
75 |
+
"metadata": {},
|
76 |
+
"source": [
|
77 |
+
"与 [之前的示例](https://www.philschmid.de/fine-tune-flan-t5) 不同,这次我们把预处理和训练分开。这样我们就可以在非 GPU 实例上运行预处理。我们先对数据集进行预处理(即分词)并将其保存到磁盘,然后训练脚本再从磁盘中加载预处理后的数据集。"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"cell_type": "code",
|
82 |
+
"execution_count": null,
|
83 |
+
"metadata": {},
|
84 |
+
"outputs": [],
|
85 |
+
"source": [
|
86 |
+
"from datasets import load_dataset\n",
|
87 |
+
"from transformers import AutoTokenizer\n",
|
88 |
+
"import numpy as np \n",
|
89 |
+
"\n",
|
90 |
+
"# Load dataset from the hub\n",
|
91 |
+
"dataset = load_dataset(dataset_id,name=dataset_config)\n",
|
92 |
+
"# Load tokenizer of FLAN-t5-base\n",
|
93 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
|
94 |
+
"\n",
|
95 |
+
"print(f\"Train dataset size: {len(dataset['train'])}\")\n",
|
96 |
+
"print(f\"Test dataset size: {len(dataset['test'])}\")\n",
|
97 |
+
"\n",
|
98 |
+
"# Train dataset size: 287113\n",
|
99 |
+
"# Test dataset size: 11490"
|
100 |
+
]
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"attachments": {},
|
104 |
+
"cell_type": "markdown",
|
105 |
+
"metadata": {},
|
106 |
+
"source": [
|
107 |
+
"我们在配置文件中定义了一个 `prompt_template`,其可用于来构建指令提示,以提高我们模型的性能。 `prompt_template` 有“固定”的开始词和结束词,文档放在中间。这意味着我们需要确保 *“固定”模板词 + 文档* 总长不超过模型支持的最大序列长度。因此我们需要计算模型支持的最大文档长度,稍后我们会根据它来填充或截断模板中的文档。"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"cell_type": "code",
|
112 |
+
"execution_count": 3,
|
113 |
+
"metadata": {},
|
114 |
+
"outputs": [
|
115 |
+
{
|
116 |
+
"name": "stdout",
|
117 |
+
"output_type": "stream",
|
118 |
+
"text": [
|
119 |
+
"Prompt length: 12\n",
|
120 |
+
"Max input length: 500\n"
|
121 |
+
]
|
122 |
+
}
|
123 |
+
],
|
124 |
+
"source": [
|
125 |
+
"prompt_length = len(tokenizer(prompt_template.format(input=\"\"))[\"input_ids\"])\n",
|
126 |
+
"max_sample_length = tokenizer.model_max_length - prompt_length\n",
|
127 |
+
"print(f\"Prompt length: {prompt_length}\")\n",
|
128 |
+
"print(f\"Max input length: {max_sample_length}\")\n",
|
129 |
+
"\n",
|
130 |
+
"# Prompt length: 12\n",
|
131 |
+
"# Max input length: 500"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"attachments": {},
|
136 |
+
"cell_type": "markdown",
|
137 |
+
"metadata": {},
|
138 |
+
"source": [
|
139 |
+
"现在我们知道,模型支持的最大输入文档长度为 500。除了输入之外,我们还需要知道最大“目标”序列长度,我们可以通过遍历数据集中的摘要长度来得到。(代码需要运行几分钟)"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"cell_type": "code",
|
144 |
+
"execution_count": 4,
|
145 |
+
"metadata": {},
|
146 |
+
"outputs": [
|
147 |
+
{
|
148 |
+
"data": {
|
149 |
+
"application/json": {
|
150 |
+
"ascii": false,
|
151 |
+
"bar_format": null,
|
152 |
+
"colour": null,
|
153 |
+
"elapsed": 0.012465238571166992,
|
154 |
+
"initial": 0,
|
155 |
+
"n": 0,
|
156 |
+
"ncols": null,
|
157 |
+
"nrows": null,
|
158 |
+
"postfix": null,
|
159 |
+
"prefix": "",
|
160 |
+
"rate": null,
|
161 |
+
"total": 299,
|
162 |
+
"unit": "ba",
|
163 |
+
"unit_divisor": 1000,
|
164 |
+
"unit_scale": false
|
165 |
+
},
|
166 |
+
"application/vnd.jupyter.widget-view+json": {
|
167 |
+
"model_id": "32577879b38640f898e798ea8f88a801",
|
168 |
+
"version_major": 2,
|
169 |
+
"version_minor": 0
|
170 |
+
},
|
171 |
+
"text/plain": [
|
172 |
+
" 0%| | 0/299 [00:00<?, ?ba/s]"
|
173 |
+
]
|
174 |
+
},
|
175 |
+
"metadata": {},
|
176 |
+
"output_type": "display_data"
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"name": "stdout",
|
180 |
+
"output_type": "stream",
|
181 |
+
"text": [
|
182 |
+
"Max source length: 500\n"
|
183 |
+
]
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"data": {
|
187 |
+
"application/json": {
|
188 |
+
"ascii": false,
|
189 |
+
"bar_format": null,
|
190 |
+
"colour": null,
|
191 |
+
"elapsed": 0.011892318725585938,
|
192 |
+
"initial": 0,
|
193 |
+
"n": 0,
|
194 |
+
"ncols": null,
|
195 |
+
"nrows": null,
|
196 |
+
"postfix": null,
|
197 |
+
"prefix": "",
|
198 |
+
"rate": null,
|
199 |
+
"total": 299,
|
200 |
+
"unit": "ba",
|
201 |
+
"unit_divisor": 1000,
|
202 |
+
"unit_scale": false
|
203 |
+
},
|
204 |
+
"application/vnd.jupyter.widget-view+json": {
|
205 |
+
"model_id": "724cc7afe0ba49a3b8a6a763a189e380",
|
206 |
+
"version_major": 2,
|
207 |
+
"version_minor": 0
|
208 |
+
},
|
209 |
+
"text/plain": [
|
210 |
+
" 0%| | 0/299 [00:00<?, ?ba/s]"
|
211 |
+
]
|
212 |
+
},
|
213 |
+
"metadata": {},
|
214 |
+
"output_type": "display_data"
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"name": "stdout",
|
218 |
+
"output_type": "stream",
|
219 |
+
"text": [
|
220 |
+
"Max target length: 129\n"
|
221 |
+
]
|
222 |
+
}
|
223 |
+
],
|
224 |
+
"source": [
|
225 |
+
"from datasets import concatenate_datasets\n",
|
226 |
+
"import numpy as np\n",
|
227 |
+
"\n",
|
228 |
+
"\n",
|
229 |
+
"# The maximum total input sequence length after tokenization. \n",
|
230 |
+
"# Sequences longer than this will be truncated, sequences shorter will be padded.\n",
|
231 |
+
"tokenized_inputs = concatenate_datasets([dataset[\"train\"], dataset[\"test\"]]).map(lambda x: tokenizer(x[text_column], truncation=True), batched=True, remove_columns=[text_column, summary_column])\n",
|
232 |
+
"max_source_length = max([len(x) for x in tokenized_inputs[\"input_ids\"]])\n",
|
233 |
+
"max_source_length = min(max_source_length, max_sample_length)\n",
|
234 |
+
"print(f\"Max source length: {max_source_length}\")\n",
|
235 |
+
"\n",
|
236 |
+
"# The maximum total sequence length for target text after tokenization. \n",
|
237 |
+
"# Sequences longer than this will be truncated, sequences shorter will be padded.\"\n",
|
238 |
+
"tokenized_targets = concatenate_datasets([dataset[\"train\"], dataset[\"test\"]]).map(lambda x: tokenizer(x[summary_column], truncation=True), batched=True, remove_columns=[text_column, summary_column])\n",
|
239 |
+
"target_lenghts = [len(x) for x in tokenized_targets[\"input_ids\"]]\n",
|
240 |
+
"# use 95th percentile as max target length\n",
|
241 |
+
"max_target_length = int(np.percentile(target_lenghts, 95))\n",
|
242 |
+
"print(f\"Max target length: {max_target_length}\")"
|
243 |
+
]
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"attachments": {},
|
247 |
+
"cell_type": "markdown",
|
248 |
+
"metadata": {},
|
249 |
+
"source": [
|
250 |
+
"现在一切准备就绪,可以处理数据集了。"
|
251 |
+
]
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"cell_type": "code",
|
255 |
+
"execution_count": null,
|
256 |
+
"metadata": {},
|
257 |
+
"outputs": [],
|
258 |
+
"source": [
|
259 |
+
"import os\n",
|
260 |
+
"\n",
|
261 |
+
"def preprocess_function(sample, padding=\"max_length\"):\n",
|
262 |
+
" # created prompted input\n",
|
263 |
+
" inputs = [prompt_template.format(input=item) for item in sample[text_column]]\n",
|
264 |
+
"\n",
|
265 |
+
" # tokenize inputs\n",
|
266 |
+
" model_inputs = tokenizer(inputs, max_length=tokenizer.model_max_length, padding=padding, truncation=True)\n",
|
267 |
+
"\n",
|
268 |
+
" # Tokenize targets with the `text_target` keyword argument\n",
|
269 |
+
" labels = tokenizer(text_target=sample[summary_column], max_length=max_target_length, padding=padding, truncation=True)\n",
|
270 |
+
"\n",
|
271 |
+
" # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore\n",
|
272 |
+
" # padding in the loss.\n",
|
273 |
+
" if padding == \"max_length\":\n",
|
274 |
+
" labels[\"input_ids\"] = [\n",
|
275 |
+
" [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels[\"input_ids\"]\n",
|
276 |
+
" ]\n",
|
277 |
+
"\n",
|
278 |
+
" model_inputs[\"labels\"] = labels[\"input_ids\"]\n",
|
279 |
+
" return model_inputs\n",
|
280 |
+
"\n",
|
281 |
+
"# process dataset\n",
|
282 |
+
"tokenized_dataset = dataset.map(preprocess_function, batched=True, remove_columns=list(dataset[\"train\"].features))\n",
|
283 |
+
"\n",
|
284 |
+
"# save dataset to disk\n",
|
285 |
+
"tokenized_dataset[\"train\"].save_to_disk(os.path.join(save_dataset_path,\"train\"))\n",
|
286 |
+
"tokenized_dataset[\"test\"].save_to_disk(os.path.join(save_dataset_path,\"eval\"))"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"attachments": {},
|
291 |
+
"cell_type": "markdown",
|
292 |
+
"metadata": {},
|
293 |
+
"source": [
|
294 |
+
"## 使用 `deepspeed` 微调模型\n",
|
295 |
+
"\n",
|
296 |
+
"准备完毕!我们现在可以开始训练模型了!如前所述,我们将使用集成了 DeepSpeed 的 Hugging Face Trainer。因此我们需要创建一个 `deespeed_config.json`。[DeepSpeed 配置](https://www.deepspeed.ai/docs/config-json/) 定义了要使用的 ZeRO 策略以及是否要使用混合精度训练等配置项。 Hugging Face Trainer 允许我们从 `deepspeed_config.json` 中的 `TrainingArguments` 继承相关配置以避免重复设置,查看[文档了解更多信息](https://huggingface.co/docs/transformers/v4.26.1/en/main_classes/deepspeed#configuration)。\n",
|
297 |
+
"\n",
|
298 |
+
"我们创建了 4 组 deepspeed 配置文件用于实验,包括 `CPU 卸载`和`混合精度`:\n",
|
299 |
+
"\n",
|
300 |
+
"- [ds_flan_t5_z3_config.json](https://github.com/philschmid/deep-learning-pytorch-huggingface/blob/main/training/configs/ds_flan_t5_z3_config.json)\n",
|
301 |
+
"- [ds_flan_t5_z3_config_bf16.json](https://github.com/philschmid/deep-learning-pytorch-huggingface/blob/main/training/configs/ds_flan_t5_z3_config_bf16.json)\n",
|
302 |
+
"- [ds_flan_t5_z3_offload.json](https://github.com/philschmid/deep-learning-pytorch-huggingface/blob/main/training/configs/ds_flan_t5_z3_offload.json)\n",
|
303 |
+
"- [ds_flan_t5_z3_offload_bf16.json](https://github.com/philschmid/deep-learning-pytorch-huggingface/blob/main/training/configs/ds_flan_t5_z3_offload_bf16.json)\n",
|
304 |
+
"\n",
|
305 |
+
"你可以根据你的运行环境选择,例如如果在 NVIDIA V100s 上运行,你就不能使用带 `bf16` 的配置,因为 V100 不支持 `bfloat16` 数据类型。\n",
|
306 |
+
"\n",
|
307 |
+
"> 在微调 `T5` 模型时,不能使用 `fp16`,因为它会导致精度溢出问题,参见:[#4586](https://github.com/huggingface/transformers/issues/4586),[#10830](https://github.com/huggingface/transformers/issues/10830), [#10956](https://github.com/huggingface/transformers/pull/10956)\n",
|
308 |
+
">\n",
|
309 |
+
"\n",
|
310 |
+
"如开头所述,我们使用的是 p4dn.24xlarge AWS EC2 实例,该实例包含 8 张显存为 40GB 的 NVIDIA A100。这意味着我们可以使用 `bf16`,它将减少近一半的模型显存占用,使我们能够在不卸载的情况下高效训练。\n",
|
311 |
+
"\n",
|
312 |
+
"我们将使用 [ds_flan_t5_z3_config_bf16.json](https://github.com/philschmid/deep-learning-pytorch-huggingface/blob/main/training/configs/ds_flan_t5_z3_config_bf16.json)。如果你不想用 `auto` 值,可以查看 [文档](https://huggingface.co/docs/transformers/v4.26.1/en/main_classes/deepspeed#configuration)。"
|
313 |
+
]
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"attachments": {},
|
317 |
+
"cell_type": "markdown",
|
318 |
+
"metadata": {},
|
319 |
+
"source": [
|
320 |
+
"```\n",
|
321 |
+
"{\n",
|
322 |
+
" \"bf16\": {\n",
|
323 |
+
" \"enabled\": \"auto\"\n",
|
324 |
+
" },\n",
|
325 |
+
" \"optimizer\": {\n",
|
326 |
+
" \"type\": \"AdamW\",\n",
|
327 |
+
" \"params\": {\n",
|
328 |
+
" \"lr\": \"auto\",\n",
|
329 |
+
" \"betas\": \"auto\",\n",
|
330 |
+
" \"eps\": \"auto\",\n",
|
331 |
+
" \"weight_decay\": \"auto\"\n",
|
332 |
+
" }\n",
|
333 |
+
" },\n",
|
334 |
+
" \"scheduler\": {\n",
|
335 |
+
" \"type\": \"WarmupLR\",\n",
|
336 |
+
" \"params\": {\n",
|
337 |
+
" \"warmup_min_lr\": \"auto\",\n",
|
338 |
+
" \"warmup_max_lr\": \"auto\",\n",
|
339 |
+
" \"warmup_num_steps\": \"auto\"\n",
|
340 |
+
" }\n",
|
341 |
+
" },\n",
|
342 |
+
" \"zero_optimization\": {\n",
|
343 |
+
" \"stage\": 3,\n",
|
344 |
+
" \"overlap_comm\": true,\n",
|
345 |
+
" \"contiguous_gradients\": true,\n",
|
346 |
+
" \"sub_group_size\": 1e9,\n",
|
347 |
+
" \"reduce_bucket_size\": \"auto\",\n",
|
348 |
+
" \"stage3_prefetch_bucket_size\": \"auto\",\n",
|
349 |
+
" \"stage3_param_persistence_threshold\": \"auto\",\n",
|
350 |
+
" \"stage3_max_live_parameters\": 1e9,\n",
|
351 |
+
" \"stage3_max_reuse_distance\": 1e9,\n",
|
352 |
+
" \"stage3_gather_16bit_weights_on_model_save\": false\n",
|
353 |
+
" },\n",
|
354 |
+
" \"gradient_accumulation_steps\": \"auto\",\n",
|
355 |
+
" \"gradient_clipping\": \"auto\",\n",
|
356 |
+
" \"steps_per_print\": 2000,\n",
|
357 |
+
" \"train_batch_size\": \"auto\",\n",
|
358 |
+
" \"train_micro_batch_size_per_gpu\": \"auto\",\n",
|
359 |
+
" \"wall_clock_breakdown\": false\n",
|
360 |
+
"}\n",
|
361 |
+
"```"
|
362 |
+
]
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"attachments": {},
|
366 |
+
"cell_type": "markdown",
|
367 |
+
"metadata": {},
|
368 |
+
"source": [
|
369 |
+
"现在,该训练脚本上场了。我们根据[之前的博文](https://www.philschmid.de/fine-tune-flan-t5)准备了一个 [run_seq2seq_deepspeed.py](https://github.com/philschmid/deep-learning-pytorch-huggingface/blob/main/training/scripts/run_seq2seq_deepspeed.py) 训练脚本,它支持我们配置 deepspeed 和其他超参数,包括 `google/flan-t5-xxl` 的模型 ID。\n",
|
370 |
+
"\n",
|
371 |
+
"我们使用 `deepspeed` 启动器触发训练,输入给启动器的参数包括 GPU 数量、deepspeed 配置及其它超参数(如 `google/flan-t5-xxl` 的模型 ID)。"
|
372 |
+
]
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"cell_type": "code",
|
376 |
+
"execution_count": 16,
|
377 |
+
"metadata": {},
|
378 |
+
"outputs": [
|
379 |
+
{
|
380 |
+
"name": "stdout",
|
381 |
+
"output_type": "stream",
|
382 |
+
"text": [
|
383 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
384 |
+
"To disable this warning, you can either:\n",
|
385 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
386 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
|
387 |
+
"deepspeed --num_gpus=8 scripts/run_seq2seq_deepspeed.py --model_id google/flan-t5-xxl --dataset_path data --epochs 3 --per_device_train_batch_size 8 --per_device_eval_batch_size 8 --generation_max_length 129 --lr 1e-4 --deepspeed configs/ds_flan_t5_z3_config_bf16.json\n"
|
388 |
+
]
|
389 |
+
}
|
390 |
+
],
|
391 |
+
"source": [
|
392 |
+
"!deepspeed --num_gpus=8 scripts/run_seq2seq_deepspeed.py \\\n",
|
393 |
+
" --model_id $model_id \\\n",
|
394 |
+
" --dataset_path $save_dataset_path \\\n",
|
395 |
+
" --epochs 3 \\\n",
|
396 |
+
" --per_device_train_batch_size 8 \\\n",
|
397 |
+
" --per_device_eval_batch_size 8 \\\n",
|
398 |
+
" --generation_max_length $max_target_length \\\n",
|
399 |
+
" --lr 1e-4 \\\n",
|
400 |
+
" --deepspeed configs/ds_flan_t5_z3_config_bf16.json "
|
401 |
+
]
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"attachments": {},
|
405 |
+
"cell_type": "markdown",
|
406 |
+
"metadata": {},
|
407 |
+
"source": [
|
408 |
+
"DeepSpeed 先将模型加载到 CPU 上,然后将其拆分到 8 张 A100 上然后开始训练。使用 [CNN Dailymail 数据集](https://huggingface.co/datasets/cnn_dailymail)进行训练大约需要 10 个小时,费用约为 `322 美元`。"
|
409 |
+
]
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"attachments": {},
|
413 |
+
"cell_type": "markdown",
|
414 |
+
"metadata": {},
|
415 |
+
"source": [
|
416 |
+
"# 结果与实验\n",
|
417 |
+
"\n",
|
418 |
+
"为了更好地了解硬件要求,我们对 FLAN-T5 XL 和 XXL 进行了一系列实验,以帮助我们评估和了解硬件需求以及训练这些模型的成本。\n",
|
419 |
+
"\n",
|
420 |
+
"下表列出了实验和相关设置的详细信息。\n",
|
421 |
+
"\n",
|
422 |
+
"数据集: `\"cnn_dailymail\"`\n",
|
423 |
+
"- 训练样本数: `287113`\n",
|
424 |
+
"- 验证样本数: `13368`\n",
|
425 |
+
"\n",
|
426 |
+
"超参:\n",
|
427 |
+
"- epochs: `3`\n",
|
428 |
+
"- 学习率: `1e-4`\n",
|
429 |
+
"\n",
|
430 |
+
"运行环境设置: \n",
|
431 |
+
"- 4x V100 16GB: p3.8xlarge\n",
|
432 |
+
"- 4x A10G 24GB: g5.24xlarge\n",
|
433 |
+
"- 8x V100 16GB: p3.16xlarge\n",
|
434 |
+
"- 8x A100 40GB: p4dn.24xlarge\n",
|
435 |
+
"\n",
|
436 |
+
"\n",
|
437 |
+
"| 模型 | DeepSpeed 卸载 | 硬件 | GPU每卡batch size | 精度 | 时长 | 费用 |\n",
|
438 |
+
"|-------------------|------------|--------------|--------------------|-----------|----------|--------|\n",
|
439 |
+
"| FLAN-T5-XL (3B) | No | 4x V100 16GB | OOM | fp32 | - | - |\n",
|
440 |
+
"| FLAN-T5-XL (3B) | No | 8x V100 16GB | 1 | fp32 | 105h | ~$2570 |\n",
|
441 |
+
"| FLAN-T5-XL (3B) | No | 8x A100 40GB | 72 | bf16 | 2.5h | ~$81 |\n",
|
442 |
+
"| FLAN-T5-XL (3B) | Yes | 4x V100 16GB | 8 | fp32 | 69h | ~$828 |\n",
|
443 |
+
"| FLAN-T5-XL (3B) | Yes | 8x V100 16GB | 8 | fp32 | 32h | ~$768 |\n",
|
444 |
+
"| FLAN-T5-XXL (11B) | No | 8x A100 40GB | 8 | bf16 | 10h | ~$322 |\n",
|
445 |
+
"| FLAN-T5-XXL (11B) | Yes | 4x V100 16GB | OOM | fp32 | - | - |\n",
|
446 |
+
"| FLAN-T5-XXL (11B) | Yes | 8x V100 16GB | OOM | fp32 | - | - |\n",
|
447 |
+
"| FLAN-T5-XXL (11B) | Yes | 4x A10G 24GB | 24 | bf16 | 90h | ~$732 |\n",
|
448 |
+
"| FLAN-T5-XXL (11B) | Yes | 8x A100 40GB | 48 | bf16 | 19h | ~$613 |\n",
|
449 |
+
"\n",
|
450 |
+
"我们可以看到 `bf16` 与 `fp32` 相比具有显著优势。FLAN-T5-XXL 能放进 4 张 A10G (24GB),但放不进 8 张 V100 16GB。\n",
|
451 |
+
"\n",
|
452 |
+
"我们的实验还表明,如果模型可以无需卸载同时以 batch size 大于 4 的配置跑在 GPU 上,其速度将比卸载模型和减小 batch size 的配置快约 2 倍且更具成本效益。"
|
453 |
+
]
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"attachments": {},
|
457 |
+
"cell_type": "markdown",
|
458 |
+
"metadata": {},
|
459 |
+
"source": [
|
460 |
+
"> 英文原文: <url> https://www.philschmid.de/fine-tune-flan-t5-deepspeed </url>\n",
|
461 |
+
"> 原文作者:Philipp Schmid\n",
|
462 |
+
"> 译者: Matrix Yao (姚伟峰),英特尔深度学习工程师,工作方向为 transformer-family 模型在各模态数据上的应用及大规模模型的训练推理。"
|
463 |
+
]
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"cell_type": "markdown",
|
467 |
+
"metadata": {},
|
468 |
+
"source": []
|
469 |
+
}
|
470 |
+
],
|
471 |
+
"metadata": {
|
472 |
+
"kernelspec": {
|
473 |
+
"display_name": "Python 3",
|
474 |
+
"language": "python",
|
475 |
+
"name": "python3"
|
476 |
+
},
|
477 |
+
"language_info": {
|
478 |
+
"codemirror_mode": {
|
479 |
+
"name": "ipython",
|
480 |
+
"version": 3
|
481 |
+
},
|
482 |
+
"file_extension": ".py",
|
483 |
+
"mimetype": "text/x-python",
|
484 |
+
"name": "python",
|
485 |
+
"nbconvert_exporter": "python",
|
486 |
+
"pygments_lexer": "ipython3",
|
487 |
+
"version": "3.6.8"
|
488 |
+
},
|
489 |
+
"orig_nbformat": 4,
|
490 |
+
"vscode": {
|
491 |
+
"interpreter": {
|
492 |
+
"hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
|
493 |
+
}
|
494 |
+
}
|
495 |
+
},
|
496 |
+
"nbformat": 4,
|
497 |
+
"nbformat_minor": 2
|
498 |
+
}
|