Datasets:
GEM
/

Modalities:
Text
Libraries:
Datasets
License:
mlsum / mlsum.py
lewtun's picture
lewtun HF staff
Rename gem_id for challenge splits
b47300a
import json
import os
import datasets
_CITATION = """\
@article{scialom2020mlsum,
title={MLSUM: The Multilingual Summarization Corpus},
author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},
journal={arXiv preprint arXiv:2004.14900},
year={2020}
}
"""
_DESCRIPTION = """\
This is the MLSUM subset of the GEM benchmark. MLSUM is the first large-scale MultiLingual SUMmarization dataset.
Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish.
Together with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community.
We report cross-lingual comparative analyses based on state-of-the-art systems.
These highlight existing biases which motivate the use of a multi-lingual dataset.
"""
_URL = "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/"
_LANG = ["de", "es"]
_URLs = {
"de": {
"train": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_train.zip",
"validation": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_val.zip",
"test": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_test.zip",
"bad_ids": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_mlsum_bad_ids_fixed.json",
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/mlsum_de.zip",
},
"es": {
"train": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_train.zip",
"validation": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_val.zip",
"test": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_test.zip",
"bad_ids": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_mlsum_bad_ids_fixed.json",
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/mlsum_es.zip",
},
}
class Mlsum(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=lang,
version=datasets.Version("1.0.0"),
description="",
)
for lang in _LANG
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"gem_id": datasets.Value("string"),
"gem_parent_id": datasets.Value("string"),
"text": datasets.Value("string"),
"topic": datasets.Value("string"),
"url": datasets.Value("string"),
"title": datasets.Value("string"),
"date": datasets.Value("string"),
"target": datasets.Value("string"),
"references": [datasets.Value("string")],
}
),
supervised_keys=None,
homepage="",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_dir = dl_manager.download_and_extract(_URLs[self.config.name])
lang = str(self.config.name)
challenge_sets = [
("challenge_train_sample", f"train_mlsum_{lang}_RandomSample500.json"),
("challenge_validation_sample", f"validation_mlsum_{lang}_RandomSample500.json"),
("challenge_test_covid", f"{lang}_test_covid19_cleaned.jsonl"),
]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(dl_dir["train"], lang + "_train.jsonl"),
"split": "train",
"lang": lang,
"filepaths": dl_dir["bad_ids"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(dl_dir["validation"], lang + "_val.jsonl"),
"split": "validation",
"lang": lang,
"filepaths": dl_dir["bad_ids"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(dl_dir["test"], lang + "_test.jsonl"),
"split": "test",
"lang": lang,
"filepaths": dl_dir["bad_ids"],
},
),
] + [
datasets.SplitGenerator(
name=challenge_split,
gen_kwargs={
"filepath": os.path.join(dl_dir["challenge_set"], f"mlsum_{self.config.name}", filename),
"split": challenge_split,
},
)
for challenge_split, filename in challenge_sets
]
def _generate_examples(self, filepath, split, filepaths=None, lang=None):
"""Yields examples."""
if split in ["train", "validation", "test", "challenge_test_covid"]:
if split == "challenge_test_covid":
bad_ids = {}
else:
bad_ids_dct = json.load(open(filepaths, encoding="utf-8"))
bad_ids = dict((bad_url, True) for _, bad_url in bad_ids_dct[f"{lang}-{split}"])
with open(filepath, encoding="utf-8") as f:
id_ = -1
for line in f:
data = json.loads(line)
if data["url"] in bad_ids:
continue
else:
id_ += 1
yield id_, {
"gem_id": f"mlsum_{self.config.name}-{split}-{id_}",
"gem_parent_id": f"mlsum_{self.config.name}-{split}-{id_}",
"text": data["text"],
"target": data["summary"],
"references": [] if split == "train" else [data["summary"]],
"topic": data["topic"],
"url": data["url"],
"title": data["title"],
"date": data["date"],
}
else:
exples = json.load(open(filepath, encoding="utf-8"))
if isinstance(exples, dict):
assert len(exples) == 1, "multiple entries found"
exples = list(exples.values())[0]
for id_, exple in enumerate(exples):
if len(exple) == 0:
continue
exple["gem_parent_id"] = exple["gem_id"]
exple["gem_id"] = f"mlsum_{self.config.name}-{split}-{id_}"
yield id_, exple