|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@article{scialom2020mlsum, |
|
title={MLSUM: The Multilingual Summarization Corpus}, |
|
author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo}, |
|
journal={arXiv preprint arXiv:2004.14900}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This is the MLSUM subset of the GEM benchmark. MLSUM is the first large-scale MultiLingual SUMmarization dataset. |
|
Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish. |
|
Together with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. |
|
We report cross-lingual comparative analyses based on state-of-the-art systems. |
|
These highlight existing biases which motivate the use of a multi-lingual dataset. |
|
""" |
|
_URL = "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/" |
|
_LANG = ["de", "es"] |
|
_URLs = { |
|
"de": { |
|
"train": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_train.zip", |
|
"validation": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_val.zip", |
|
"test": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_test.zip", |
|
"bad_ids": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_mlsum_bad_ids_fixed.json", |
|
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/mlsum_de.zip", |
|
}, |
|
"es": { |
|
"train": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_train.zip", |
|
"validation": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_val.zip", |
|
"test": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_test.zip", |
|
"bad_ids": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_mlsum_bad_ids_fixed.json", |
|
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/mlsum_es.zip", |
|
}, |
|
} |
|
|
|
|
|
class Mlsum(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name=lang, |
|
version=datasets.Version("1.0.0"), |
|
description="", |
|
) |
|
for lang in _LANG |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"gem_id": datasets.Value("string"), |
|
"gem_parent_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"topic": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"date": datasets.Value("string"), |
|
"target": datasets.Value("string"), |
|
"references": [datasets.Value("string")], |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
dl_dir = dl_manager.download_and_extract(_URLs[self.config.name]) |
|
lang = str(self.config.name) |
|
challenge_sets = [ |
|
("challenge_train_sample", f"train_mlsum_{lang}_RandomSample500.json"), |
|
("challenge_validation_sample", f"validation_mlsum_{lang}_RandomSample500.json"), |
|
("challenge_test_covid", f"{lang}_test_covid19_cleaned.jsonl"), |
|
] |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(dl_dir["train"], lang + "_train.jsonl"), |
|
"split": "train", |
|
"lang": lang, |
|
"filepaths": dl_dir["bad_ids"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(dl_dir["validation"], lang + "_val.jsonl"), |
|
"split": "validation", |
|
"lang": lang, |
|
"filepaths": dl_dir["bad_ids"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(dl_dir["test"], lang + "_test.jsonl"), |
|
"split": "test", |
|
"lang": lang, |
|
"filepaths": dl_dir["bad_ids"], |
|
}, |
|
), |
|
] + [ |
|
datasets.SplitGenerator( |
|
name=challenge_split, |
|
gen_kwargs={ |
|
"filepath": os.path.join(dl_dir["challenge_set"], f"mlsum_{self.config.name}", filename), |
|
"split": challenge_split, |
|
}, |
|
) |
|
for challenge_split, filename in challenge_sets |
|
] |
|
|
|
def _generate_examples(self, filepath, split, filepaths=None, lang=None): |
|
"""Yields examples.""" |
|
if split in ["train", "validation", "test", "challenge_test_covid"]: |
|
if split == "challenge_test_covid": |
|
bad_ids = {} |
|
else: |
|
bad_ids_dct = json.load(open(filepaths, encoding="utf-8")) |
|
bad_ids = dict((bad_url, True) for _, bad_url in bad_ids_dct[f"{lang}-{split}"]) |
|
with open(filepath, encoding="utf-8") as f: |
|
id_ = -1 |
|
for line in f: |
|
data = json.loads(line) |
|
if data["url"] in bad_ids: |
|
continue |
|
else: |
|
id_ += 1 |
|
yield id_, { |
|
"gem_id": f"mlsum_{self.config.name}-{split}-{id_}", |
|
"gem_parent_id": f"mlsum_{self.config.name}-{split}-{id_}", |
|
"text": data["text"], |
|
"target": data["summary"], |
|
"references": [] if split == "train" else [data["summary"]], |
|
"topic": data["topic"], |
|
"url": data["url"], |
|
"title": data["title"], |
|
"date": data["date"], |
|
} |
|
else: |
|
exples = json.load(open(filepath, encoding="utf-8")) |
|
if isinstance(exples, dict): |
|
assert len(exples) == 1, "multiple entries found" |
|
exples = list(exples.values())[0] |
|
for id_, exple in enumerate(exples): |
|
if len(exple) == 0: |
|
continue |
|
exple["gem_parent_id"] = exple["gem_id"] |
|
exple["gem_id"] = f"mlsum_{self.config.name}-{split}-{id_}" |
|
yield id_, exple |
|
|