Datasets:
GEM
/

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 23,059 Bytes
5efe2da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1d9d32
5efe2da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7026ad6
5efe2da
c1d9d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5efe2da
 
 
 
 
 
 
 
 
 
c4b38e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5efe2da
 
c4b38e9
 
 
59359ce
 
c4b38e9
 
 
 
 
 
59359ce
 
c4b38e9
59359ce
 
c4b38e9
59359ce
 
c4b38e9
 
ec1d867
 
 
 
 
 
c4b38e9
 
 
 
59359ce
 
c4b38e9
 
 
 
 
 
59359ce
 
c4b38e9
59359ce
 
c4b38e9
59359ce
 
c4b38e9
 
2dbc562
 
 
 
 
 
c4b38e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5efe2da
 
c4b38e9
 
 
b6881be
46ea39f
 
b02f01e
 
5efe2da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7026ad6
5efe2da
 
 
 
 
7026ad6
5efe2da
 
 
 
 
 
 
7026ad6
5efe2da
 
 
 
 
 
 
7026ad6
5efe2da
 
 
 
 
c1d9d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5efe2da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6881be
46ea39f
 
c1d9d32
 
5efe2da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""


import csv
import json
import os
import re

import datasets


_CITATION = """\
@inproceedings{puduppully-etal-2019-data,
    title = "Data-to-text Generation with Entity Modeling",
    author = "Puduppully, Ratish  and
      Dong, Li  and
      Lapata, Mirella",
    booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/P19-1195",
    doi = "10.18653/v1/P19-1195",
    pages = "2023--2035",
}
"""

_DESCRIPTION = """\
The MLB dataset for data to text generation contains Major League Baseball games statistics and 
their human-written summaries. 
"""

_HOMEPAGE = "https://github.com/ratishsp/mlb-data-scripts"

_LICENSE = ""

_URL = "data.tar.bz2"

team_verbalization_map = {"team_errors": "<TEAM_ERRORS>", "team_hits": "<TEAM_HITS>", "team_runs": "<TEAM_RUNS>"}
pitcher_verbalization_map = {"p_bb": "<PITCH-BASE-ON-BALLS>", "p_er": "<EARNED-RUN>", "p_era": "<EARNED-RUN-AVG>",
                             "p_h": "<PITCH-HITS>", "p_hr": "<PITCH-HOME-RUN>", "p_l": "<PITCH-LOSS>",
                             "p_loss": "<PITCH-LOSING-PITCHER>", "p_s": "<PITCH-STRIKES-THROWN>",
                             "p_np": "<PITCH-COUNT>", "p_r": "<PITCH-RUNS>", "p_save": "<PITCH-SAVING-PITCHER>",
                             "p_so": "<PITCH-STRIKE-OUT>", "p_bf": "<PITCH-BATTERS-FACED>",
                             "p_bs": "<PITCH-BLOWN-SAVE>",
                             "p_sv": "<PITCH-SAVE>", "p_w": "<PITCH-WIN>", "p_ip1": "<INNINGS-PITCHED-1>",
                             "p_ip2": "<INNINGS-PITCHED-2>", "p_win": "<PITCH-WINNING-PITCHER>",
                             "p_out": "<PITCH-OUT>"}
batter_verbalization_map = {"h": "<HITS>", "r": "<RUNS>", "hr": "<HOME-RUN>", "ab": "<ATBAT>", "avg": "<AVG>",
                            "rbi": "<RBI>", "cs": "<CAUGHT-STEAL>", "hbp": "<HIT-BY-PITCH>", "a": "<ASSIST>",
                            "bb": "<BASE-ON-BALL>", "e": "<ERROR>", "obp": "<ON-BASE-PCT>", "po": "<PUTOUT>",
                            "pos": "<POS>", "sb": "<STOLEN-BASE>", "sf": "<SAC-FLY>", "slg": "<SLUG>",
                            "so": "<STRIKEOUT>"
                            }
pbyp_verbalization_map = {"o": "<PBYP-OUTS>", "b": "<PBYP-BALLS>", "s": "<PBYP-STRIKES>", "b1": "<PBYP-B1>",
                          "b2": "<PBYP-B2>", "b3": "<PBYP-B3>", "batter": "<PBYP-BATTER>",
                          "pitcher": "<PBYP-PITCHER>",
                          "scorers": "<PBYP-SCORERS>", "event": "<PBYP-EVENT>", "event2": "<PBYP-EVENT2>",
                          "fielder_error": "<PBYP-FIELDER-ERROR>", "runs": "<PBYP-RUNS>", "rbi": "<PBYP-RBI>",
                          "error_runs": "<PBYP-ERROR-RUNS>", "top": "<TOP>", "bottom": "<BOTTOM>"}

player_verbalization_map = dict(pitcher_verbalization_map, **batter_verbalization_map)


class MlbDataToText(datasets.GeneratorBasedBuilder):
    """MLB dataset for data to text generation"""

    VERSION = datasets.Version("1.1.0")

    def _info(self):
        features = datasets.Features(
            {
                "home_name": datasets.Value("string"),
                "box_score": [
                    {
                        "p_l": datasets.Value("string"),
                        "last_name": datasets.Value("string"),
                        "p_h": datasets.Value("string"),
                        "sac": datasets.Value("string"),
                        "p_bb": datasets.Value("string"),
                        "pos": datasets.Value("string"),
                        "ao": datasets.Value("string"),
                        "p_bf": datasets.Value("string"),
                        "cs": datasets.Value("string"),
                        "hbp": datasets.Value("string"),
                        "ab": datasets.Value("string"),
                        "full_name": datasets.Value("string"),
                        "p_w": datasets.Value("string"),
                        "go": datasets.Value("string"),
                        "fldg": datasets.Value("string"),
                        "p_bs": datasets.Value("string"),
                        "avg": datasets.Value("string"),
                        "p_r": datasets.Value("string"),
                        "p_s": datasets.Value("string"),
                        "lob": datasets.Value("string"),
                        "first_name": datasets.Value("string"),
                        "p_sv": datasets.Value("string"),
                        "p_so": datasets.Value("string"),
                        "p_save": datasets.Value("string"),
                        "p_hr": datasets.Value("string"),
                        "po": datasets.Value("string"),
                        "p_ip1": datasets.Value("string"),
                        "p_ip2": datasets.Value("string"),
                        "bb": datasets.Value("string"),
                        "ops": datasets.Value("string"),
                        "p_hld": datasets.Value("string"),
                        "bo": datasets.Value("string"),
                        "p_loss": datasets.Value("string"),
                        "e": datasets.Value("string"),
                        "p_game_score": datasets.Value("string"),
                        "p_win": datasets.Value("string"),
                        "a": datasets.Value("string"),
                        "p_era": datasets.Value("string"),
                        "d": datasets.Value("string"),
                        "p_out": datasets.Value("string"),
                        "h": datasets.Value("string"),
                        "p_er": datasets.Value("string"),
                        "p_np": datasets.Value("string"),
                        "hr": datasets.Value("string"),
                        "r": datasets.Value("string"),
                        "so": datasets.Value("string"),
                        "t": datasets.Value("string"),
                        "rbi": datasets.Value("string"),
                        "team": datasets.Value("string"),
                        "sb": datasets.Value("string"),
                        "slg": datasets.Value("string"),
                        "sf": datasets.Value("string"),
                        "obp": datasets.Value("string"),
                    }
                ],
                "home_city": datasets.Value("string"),
                "vis_name": datasets.Value("string"),
                "play_by_play": [{
                    "top": [{
                        "runs": datasets.Value("string"),
                        "scorers": [
                            datasets.Value("string")
                        ],
                        "pitcher": datasets.Value("string"),
                        "o": datasets.Value("string"),
                        "b": datasets.Value("string"),
                        "s": datasets.Value("string"),
                        "batter": datasets.Value("string"),
                        "b1": [
                            datasets.Value("string")
                        ],
                        "b2": [
                            datasets.Value("string")
                        ],
                        "b3": [
                            datasets.Value("string")
                        ],
                        "event": datasets.Value("string"),
                        "event2": datasets.Value("string"),
                        "home_team_runs": datasets.Value("string"),
                        "away_team_runs": datasets.Value("string"),
                        "rbi": datasets.Value("string"),
                        "error_runs": datasets.Value("string"),
                        "fielder_error": datasets.Value("string")
                    }
                    ],
                    "bottom": [{
                        "runs": datasets.Value("string"),
                        "scorers": [
                            datasets.Value("string")
                        ],
                        "pitcher": datasets.Value("string"),
                        "o": datasets.Value("string"),
                        "b": datasets.Value("string"),
                        "s": datasets.Value("string"),
                        "batter": datasets.Value("string"),
                        "b1": [
                            datasets.Value("string")
                        ],
                        "b2": [
                            datasets.Value("string")
                        ],
                        "b3": [
                            datasets.Value("string")
                        ],
                        "event": datasets.Value("string"),
                        "event2": datasets.Value("string"),
                        "home_team_runs": datasets.Value("string"),
                        "away_team_runs": datasets.Value("string"),
                        "rbi": datasets.Value("string"),
                        "error_runs": datasets.Value("string"),
                        "fielder_error": datasets.Value("string")
                    }
                    ],
                    "inning": datasets.Value("string")
                }
                ],
                "vis_line": {
                    "innings": [{
                     "inn": datasets.Value("string"),
                     "runs": datasets.Value("string")
                    }
                    ],
                    "result": datasets.Value("string"),
                    "team_runs": datasets.Value("string"),
                    "team_hits": datasets.Value("string"),
                    "team_errors": datasets.Value("string"),
                    "team_name": datasets.Value("string"),
                    "team_city": datasets.Value("string")
                },
                "home_line": {
                    "innings": [{
                        "inn": datasets.Value("string"),
                        "runs": datasets.Value("string")
                    }
                    ],
                    "result": datasets.Value("string"),
                    "team_runs": datasets.Value("string"),
                    "team_hits": datasets.Value("string"),
                    "team_errors": datasets.Value("string"),
                    "team_name": datasets.Value("string"),
                    "team_city": datasets.Value("string")
                },
                "vis_city": datasets.Value("string"),
                "day": datasets.Value("string"),
                "summary": [
                    datasets.Value("string"),
                ],
                "summary_eval": datasets.Value("string"),
                "gem_id": datasets.Value("string"),
                "target": datasets.Value("string"),
                "references": [datasets.Value("string")],
                "linearized_input": datasets.Value("string")
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        data_dir = dl_manager.download_and_extract(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "train.jsonl"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "test.jsonl"),
                    "split": "test"
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "validation.jsonl"),
                    "split": "validation",
                },
            ),
        ]

    def tokenize_initials(self, value):
        attrib_value = re.sub(r"(\w)\.(\w)\.", r"\g<1>. \g<2>.", value)
        return attrib_value

    def get_team_line_attributes(self, entry, name):
        if name == entry["home_line"]["team_name"]:
            line = entry["home_line"]
            type = "home"
        elif name == entry["vis_line"]["team_name"]:
            line = entry["vis_line"]
            type = "vis"
        else:
            assert False

        city = line["team_city"]
        name = line["team_name"]
        result = line["result"]
        updated_type = "<" + type.upper() + ">"
        team_tup = (updated_type, name, city, result)
        team_line = "%s <TEAM> %s <CITY> %s <TEAM-RESULT> %s"
        sentence1 = team_line % (team_tup)
        other_attributes = []
        attributes = ["team_runs", "team_hits", "team_errors"]
        for attrib in attributes:
            template_string = " ".join([team_verbalization_map[attrib], "%s"])
            other_attributes.append(template_string % line[attrib])
        other_attributes = " ".join(other_attributes)
        team_info = sentence1
        if len(other_attributes) > 0:
            team_info = " ".join([sentence1, other_attributes])
        innings = line["innings"]
        inning_verbalization = []
        for inning in innings:
            inning_phrase = "<INN> %s %s" % (inning["inn"], inning["runs"])
            inning_verbalization.append(inning_phrase)
        inning_sentence = " ".join(inning_verbalization)
        team_info = " ".join([team_info, inning_sentence])
        return team_info

    def get_player_line(self, entry):
        players = []
        for player in entry["box_score"]:
            if player["full_name"] == "N/A":
                continue
            player_line = "<PLAYER> %s <TEAM> %s <POS> %s"
            player_tup = (self.tokenize_initials(player["full_name"]), player["team"], player["pos"])
            player_basic_info = player_line % (player_tup)
            other_attributes = []
            for attrib in ["r", "h", "hr", "rbi", "e", "ab", "avg", "cs", "hbp", "bb", "sb", "sf", "so", "a", "po",
                           "p_ip1", "p_ip2", "p_w", "p_l", "p_h", "p_r", "p_er", "p_bb", "p_so", "p_hr", "p_np", "p_s",
                           "p_era", "p_win", "p_loss", "p_save", "p_sv", "p_bf", "p_out", "p_bs"]:
                if player[attrib] == "N/A":
                    continue
                if attrib in ['sb', 'sf', 'e', 'po', 'a', 'cs', 'hbp', 'hr', 'so', 'bb', "p_hr", "p_sv",
                              "p_bs"] and int(player[attrib]) == 0:
                    continue
                if attrib in ['avg'] and player[attrib] == ".000":
                    continue
                template_string = " ".join([player_verbalization_map[attrib], "%s"])
                other_attributes.append(template_string % (player[attrib]))
            player_other_attributes = " ".join(other_attributes)
            if other_attributes:
                player_info = " ".join([player_basic_info, player_other_attributes])
            else:
                player_info = player_basic_info

            players.append(player_info)
        return players

    def get_runs_desc(self, inning_play):
        obs_desc = []
        for attrib in ["runs", "rbi", "error_runs"]:
            if attrib in inning_play and inning_play[attrib] != "N/A" and int(inning_play[attrib]) > 0:
                desc = " ".join([pbyp_verbalization_map[attrib], "%d"])
                obs_desc.append(desc % (int(inning_play[attrib])))
        return obs_desc

    def get_obs_desc(self, inning_play):
        obs_desc = []
        for attrib in ["o", "b", "s"]:
            if attrib in inning_play:
                desc = " ".join([pbyp_verbalization_map[attrib], "%d"])
                obs_desc.append(desc % (int(inning_play[attrib])))
        return obs_desc

    def get_name_desc(self, attrib, inning_play, obs_desc):
        if attrib in inning_play:
            desc = " ".join([pbyp_verbalization_map[attrib], "%s"])
            attrib_value = self.tokenize_initials(inning_play[attrib])
            obs_desc.append(desc % (attrib_value))

    def get_name_desc_entity(self, attrib, entity_name, obs_desc):
        desc = " ".join([pbyp_verbalization_map[attrib], "%s"])
        attrib_value = self.tokenize_initials(entity_name)
        obs_desc.append(desc % (attrib_value))

    def get_team_scores_desc(self, away, home, inning_play, obs_desc):
        if "home_team_runs" in inning_play and "away_team_runs" in inning_play and inning_play[
            "home_team_runs"] != "N/A" and inning_play["away_team_runs"] != "N/A":
            desc = "<TEAM-SCORES> %s %d %s %d" % (
                home, int(inning_play["home_team_runs"]), away, int(inning_play["away_team_runs"]))
            obs_desc.append(desc)

    def get_attrib_value_desc(self, attrib, inning_play, obs_desc):
        if attrib in inning_play and inning_play[attrib] != "N/A":
            desc = " ".join([pbyp_verbalization_map[attrib], "%s"])
            obs_desc.append(desc % (inning_play[attrib]))

    def get_play_by_play_desc(self, home, away, inning, inning_play, play_index,
                              top_bottom):
        inning_line = " ".join(
            ["<INNING> %s", pbyp_verbalization_map[top_bottom], "<BATTING> %s <PITCHING> %s <PLAY> %d"])
        if top_bottom == "top":
            inning_attrib = (inning, away, home, play_index)
        else:
            inning_attrib = (inning, home, away, play_index)
        inning_desc = inning_line % (inning_attrib)
        other_attrib_desc = [inning_desc]
        other_attrib_desc.extend(self.get_runs_desc(inning_play))
        other_attrib_desc.extend(self.get_obs_desc(inning_play))
        for attrib in ["batter", "pitcher", "fielder_error"]:
            if attrib in inning_play and inning_play[attrib] != "N/A":
                self.get_name_desc(attrib, inning_play, other_attrib_desc)
        for attrib in ["scorers", "b2", "b3"]:
            if attrib in inning_play and len(inning_play[attrib]) > 0 and inning_play[attrib][0] != "N/A":
                for baserunner_instance in inning_play[attrib]:
                    self.get_name_desc_entity(attrib, baserunner_instance, other_attrib_desc)
        self.get_attrib_value_desc("event", inning_play, other_attrib_desc)
        self.get_attrib_value_desc("event2", inning_play, other_attrib_desc)
        self.get_team_scores_desc(away, home, inning_play, other_attrib_desc)
        return other_attrib_desc

    def get_play_by_play_all_entities_inning(self, inning_data, home, away, inning, side):
        play_by_play_desc = []

        play_index = 1
        inning_plays = inning_data[side]
        for inning_play in inning_plays:
            other_attrib_desc = self.get_play_by_play_desc(home, away, inning, inning_play, play_index, side)
            other_attrib_desc = " ".join(other_attrib_desc)
            play_index += 1
            play_by_play_desc.append(other_attrib_desc)
        return play_by_play_desc

    def linearize_input(self, entry):
        output = []
        output.append(self.get_team_line_attributes(entry, entry["home_line"]["team_name"]))
        output.append(self.get_team_line_attributes(entry, entry["vis_line"]["team_name"]))
        output.extend(self.get_player_line(entry))
        for inning_data in entry['play_by_play']:
            for side in ["top", "bottom"]:
                pbyp_desc = self.get_play_by_play_all_entities_inning(inning_data, entry["home_line"]["team_name"],
                                                                 entry["vis_line"]["team_name"], inning_data['inning'],
                                                                 side)
                if pbyp_desc:
                    output.append(" ".join(pbyp_desc))

        linearized_input = " ".join(output)
        linearized_input = linearized_input.replace("  ", " ")
        return linearized_input

    def _generate_examples(
        self, filepath, split  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    ):
        """ Yields examples as (key, example) tuples. """
        # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is here for legacy reason (tfds) and is not important in itself.

        with open(filepath, encoding="utf-8") as f:
            for id_, row in enumerate(f):
                data = json.loads(row)
                yield id_, {
                    "home_name": data["home_name"],
                    "box_score": data["box_score"],
                    "home_city": data["home_city"],
                    "vis_name": data["vis_name"],
                    "play_by_play": data["play_by_play"],
                    "vis_line": data["vis_line"],
                    "vis_city": data["vis_city"],
                    "day": data["day"],
                    "home_line": data["home_line"],
                    "summary": data["summary"],
                    "summary_eval": data["summary_eval"],
                    "gem_id": data["gem_id"],
                    "target": data["summary_eval"],
                    "references": [data["summary_eval"]],
                    "linearized_input": self.linearize_input(data)
                }