Datasets:
Tasks:
Table to Text
Modalities:
Text
Languages:
English
Size:
10K - 100K
Tags:
data-to-text
License:
import csv | |
import json | |
import os | |
import datasets | |
_CITATION = """\ | |
@inproceedings{e2e_cleaned, | |
address = {Tokyo, Japan}, | |
title = {Semantic {Noise} {Matters} for {Neural} {Natural} {Language} {Generation}}, | |
url = {https://www.aclweb.org/anthology/W19-8652/}, | |
booktitle = {Proceedings of the 12th {International} {Conference} on {Natural} {Language} {Generation} ({INLG} 2019)}, | |
author = {Dušek, Ondřej and Howcroft, David M and Rieser, Verena}, | |
year = {2019}, | |
pages = {421--426}, | |
} | |
""" | |
_DESCRIPTION = """\ | |
The E2E dataset is designed for a limited-domain data-to-text task -- | |
generation of restaurant descriptions/recommendations based on up to 8 different | |
attributes (name, area, price range etc.). | |
""" | |
_URLs = { | |
"train": "https://github.com/tuetschek/e2e-cleaning/raw/master/cleaned-data/train-fixed.no-ol.csv", | |
"validation": "https://raw.githubusercontent.com/jordiclive/GEM_datasets/main/e2e/validation.json", | |
"test": "https://raw.githubusercontent.com/jordiclive/GEM_datasets/main/e2e/test.json", | |
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/e2e_nlg.zip", | |
} | |
class E2ENlg(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.1") | |
DEFAULT_CONFIG_NAME = "e2e_nlg" | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"gem_id": datasets.Value("string"), | |
"gem_parent_id": datasets.Value("string"), | |
"meaning_representation": datasets.Value("string"), | |
"target": datasets.Value("string"), | |
"references": [datasets.Value("string")], | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=datasets.info.SupervisedKeysData( | |
input="meaning_representation", output="target" | |
), | |
homepage="http://www.macs.hw.ac.uk/InteractionLab/E2E/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
dl_dir = dl_manager.download_and_extract(_URLs) | |
challenge_sets = [ | |
("challenge_train_sample", "train_e2e_nlg_RandomSample500.json"), | |
("challenge_validation_sample", "validation_e2e_nlg_RandomSample500.json"), | |
("challenge_test_scramble", "test_e2e_nlg_ScrambleInputStructure500.json"), | |
] | |
return [ | |
datasets.SplitGenerator( | |
name=spl, gen_kwargs={"filepath": dl_dir[spl], "split": spl} | |
) | |
for spl in ["train", "validation", "test"] | |
] + [ | |
datasets.SplitGenerator( | |
name=challenge_split, | |
gen_kwargs={ | |
"filepath": os.path.join( | |
dl_dir["challenge_set"], "e2e_nlg", filename | |
), | |
"split": challenge_split, | |
}, | |
) | |
for challenge_split, filename in challenge_sets | |
] | |
def _generate_examples(self, filepath, split, filepaths=None, lang=None): | |
"""Yields examples.""" | |
if split.startswith("challenge"): | |
exples = json.load(open(filepath, encoding="utf-8")) | |
if isinstance(exples, dict): | |
assert len(exples) == 1, "multiple entries found" | |
exples = list(exples.values())[0] | |
for id_, exple in enumerate(exples): | |
if len(exple) == 0: | |
continue | |
exple["gem_parent_id"] = exple["gem_id"] | |
exple["gem_id"] = f"e2e_nlg-{split}-{id_}" | |
yield id_, exple | |
if split.startswith("test") or split.startswith("validation"): | |
exples = json.load(open(filepath, encoding="utf-8")) | |
if isinstance(exples, dict): | |
assert len(exples) == 1, "multiple entries found" | |
exples = list(exples.values())[0] | |
for id_, exple in enumerate(exples): | |
if len(exple) == 0: | |
continue | |
yield id_, { | |
"gem_id": f"e2e_nlg-{split}-{id_}", | |
"gem_parent_id": f"e2e_nlg-{split}-{id_}", | |
"meaning_representation": exple["meaning_representation"], | |
"target": exple["references"][0], | |
"references": exple["references"], | |
} | |
else: | |
with open(filepath, encoding="utf-8") as f: | |
reader = csv.DictReader(f) | |
for id_, example in enumerate(reader): | |
yield id_, { | |
"gem_id": f"e2e_nlg-{split}-{id_}", | |
"gem_parent_id": f"e2e_nlg-{split}-{id_}", | |
"meaning_representation": example["mr"], | |
"target": example["ref"], | |
"references": [] | |
} | |