Fanqi-Lin commited on
Commit
a5c68eb
1 Parent(s): fff2722

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -0
README.md ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - robotics
5
+ tags:
6
+ - code
7
+ size_categories:
8
+ - 100B<n<1T
9
+ ---
10
+ # Raw GoPro Videos for Four Robotic Manipulation Tasks
11
+
12
+ [[Project Page]](https://data-scaling-laws.github.io/)
13
+ [[Paper]](https://huggingface.co/papers/2410.18647)
14
+ [[Code]](https://github.com/Fanqi-Lin/Data-Scaling-Laws)
15
+ [[Models]](https://huggingface.co/Fanqi-Lin/Task-Models/)
16
+ [[Processed Dataset]](https://huggingface.co/datasets/Fanqi-Lin/Processed-Task-Dataset)
17
+
18
+ This repository contains raw GoPro videos of robotic manipulation tasks collected in-the-wild using [UMI](https://umi-gripper.github.io/), as described in the paper "Data Scaling Laws in Imitation Learning for Robotic Manipulation". The dataset covers four tasks:
19
+ + Pour Water
20
+ + Arrange Mouse
21
+ + Fold Towel
22
+ + Unplug Charger
23
+
24
+ ## Dataset Folders:
25
+ **arrange_mouse** and **pour_water**: Each folder contains data collected from 32 environments.
26
+ + The first 16 environments have 4 different object folders per environment, each containing 120 GoPro videos.
27
+ + The remaining 16 environments have one object folder per environment, each containing 120 GoPro videos.
28
+
29
+ **fold_towel** and **unplug_charger**: Each folder contains data from 32 unique environment-object pairs, with 60 GoPro videos per pair.
30
+
31
+ ## Usage
32
+ The raw GoPro videos can be processed using the provided [code](https://github.com/Fanqi-Lin/Data-Scaling-Laws) to create the [processed dataset](https://huggingface.co/datasets/Fanqi-Lin/Processed-Task-Dataset) for direct use in policy learning.