|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""WikiText Dataset.""" |
|
|
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@misc{merity2016pointer, |
|
title={Pointer Sentinel Mixture Models}, |
|
author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher}, |
|
year={2016}, |
|
eprint={1609.07843}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified |
|
Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike |
|
License. |
|
""" |
|
_HOMEPAGE = "https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/" |
|
_LICENSE = "Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)" |
|
_DATA_URL = "https://wikitext.smerity.com" |
|
|
|
|
|
class WikitextConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for GLUE.""" |
|
|
|
def __init__(self, data_url, **kwargs): |
|
"""BuilderConfig for Wikitext |
|
Args: |
|
data_url: `string`, url to the dataset (word or raw level) |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(WikitextConfig, self).__init__( |
|
version=datasets.Version( |
|
"1.0.0", |
|
), |
|
**kwargs, |
|
) |
|
self.data_url = data_url |
|
|
|
|
|
class Wikitext(datasets.GeneratorBasedBuilder): |
|
"""TODO(wikitext_103): Short description of my dataset.""" |
|
|
|
|
|
VERSION = datasets.Version("0.1.0") |
|
BUILDER_CONFIGS = [ |
|
WikitextConfig( |
|
name="wikitext-103-v1", |
|
data_url=_DATA_URL + "/" + "wikitext-103-v1.zip", |
|
description="Word level dataset. No processing is needed other than replacing newlines with <eos> tokens.", |
|
), |
|
WikitextConfig( |
|
name="wikitext-2-v1", |
|
data_url=_DATA_URL + "/" + "wikitext-2-v1.zip", |
|
description="Word level dataset. No processing is needed other than replacing newlines with <eos> tokens.", |
|
), |
|
WikitextConfig( |
|
name="wikitext-103-raw-v1", |
|
data_url=_DATA_URL + "/" + "wikitext-103-raw-v1.zip", |
|
description="Raw level dataset: the raw tokens before the addition of <unk> tokens. " |
|
"They should only be used for character level work or for creating newly derived datasets.", |
|
), |
|
WikitextConfig( |
|
name="wikitext-2-raw-v1", |
|
data_url=_DATA_URL + "/" + "wikitext-2-raw-v1.zip", |
|
description="Raw level dataset: the raw tokens before the addition of <unk> tokens. " |
|
"They should only be used for character level work or for creating newly derived datasets.", |
|
), |
|
] |
|
|
|
def _info(self): |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
"page": datasets.Value("string") |
|
|
|
} |
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
if self.config.name == "wikitext-103-v1": |
|
data_file = dl_manager.download_and_extract(self.config.data_url) |
|
data_dir = os.path.join(data_file, "wikitext-103") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_file": os.path.join(data_dir, "wiki.test.tokens"), |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_file": os.path.join(data_dir, "wiki.train.tokens"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_file": os.path.join(data_dir, "wiki.valid.tokens"), |
|
"split": "valid", |
|
}, |
|
), |
|
] |
|
else: |
|
if self.config.name == "wikitext-103-raw-v1": |
|
data_file = dl_manager.download_and_extract(self.config.data_url) |
|
data_dir = os.path.join(data_file, "wikitext-103-raw") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_file": os.path.join(data_dir, "wiki.test.raw"), |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_file": os.path.join(data_dir, "wiki.train.raw"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_file": os.path.join(data_dir, "wiki.valid.raw"), |
|
"split": "valid", |
|
}, |
|
), |
|
] |
|
else: |
|
if self.config.name == "wikitext-2-raw-v1": |
|
data_file = dl_manager.download_and_extract(self.config.data_url) |
|
data_dir = os.path.join(data_file, "wikitext-2-raw") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_file": os.path.join(data_dir, "wiki.test.raw"), |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_file": os.path.join(data_dir, "wiki.train.raw"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_file": os.path.join(data_dir, "wiki.valid.raw"), |
|
"split": "valid", |
|
}, |
|
), |
|
] |
|
else: |
|
if self.config.name == "wikitext-2-v1": |
|
data_file = dl_manager.download_and_extract( |
|
self.config.data_url |
|
) |
|
data_dir = os.path.join(data_file, "wikitext-2") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_file": os.path.join( |
|
data_dir, "wiki.test.tokens" |
|
), |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_file": os.path.join( |
|
data_dir, "wiki.train.tokens" |
|
), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_file": os.path.join( |
|
data_dir, "wiki.valid.tokens" |
|
), |
|
"split": "valid", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_file, split): |
|
"""Yields examples.""" |
|
with open(data_file, encoding="utf-8") as f: |
|
key = 0 |
|
ret = [] |
|
data = f.read().split("\n") |
|
for line in data: |
|
rline = line.replace("= = =", "===").replace("= =", "==").strip() |
|
if rline.startswith("= ") and rline.strip().endswith(" ="): |
|
page = "\n".join(ret) |
|
if page.strip(): |
|
yield key, {"page": page} |
|
key += 1 |
|
ret = [] |
|
ret.append(line) |
|
page = "\n".join(ret) |
|
yield key, {"page": page} |
|
|