import json import datasets # TODO: Add description of the dataset here # You can copy an official description _DESCRIPTION = """\ A high-quality dataset for efficient instruction tuning. """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "other" # TODO: Add link to the official dataset URLs here # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URLS = { } class LimaConfig(datasets.BuilderConfig): """BuilderConfig""" def __init__(self, **kwargs): """BuilderConfig Args: **kwargs: keyword arguments forwarded to super. """ super(LimaConfig, self).__init__(**kwargs) class Lima(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ LimaConfig( name="plain_text", version=datasets.Version("0.0.1", ""), description="Plain text", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "conversations": datasets.features.Sequence(datasets.Value("string")), "source": datasets.Value("string"), } ), ) def _split_generators(self, dl_manager): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": dl_manager.download("train.jsonl")}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath":dl_manager.download("test.jsonl")}) ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" key = 0 with open(filepath) as f: for line in f.readlines(): instance = json.loads(line) yield key, instance key += 1