phucdev commited on
Commit
ea34fa8
1 Parent(s): a4d360e

Upload dataloading script and README.md

Browse files
Files changed (2) hide show
  1. README.md +565 -0
  2. knowledge_net.py +368 -0
README.md ADDED
@@ -0,0 +1,565 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language:
5
+ - en
6
+ language_creators:
7
+ - found
8
+ license: []
9
+ multilinguality:
10
+ - monolingual
11
+ pretty_name: KnowledgeNet is a dataset for automatically populating a knowledge base
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets: []
15
+ tags:
16
+ - knowledgenet
17
+ task_categories:
18
+ - text-classification
19
+ task_ids:
20
+ - multi-class-classification
21
+ - entity-linking-classification
22
+ dataset_info:
23
+ - config_name: knet
24
+ features:
25
+ - name: fold
26
+ dtype: int32
27
+ - name: documentId
28
+ dtype: string
29
+ - name: source
30
+ dtype: string
31
+ - name: documentText
32
+ dtype: string
33
+ - name: passages
34
+ sequence:
35
+ - name: passageId
36
+ dtype: string
37
+ - name: passageStart
38
+ dtype: int32
39
+ - name: passageEnd
40
+ dtype: int32
41
+ - name: passageText
42
+ dtype: string
43
+ - name: exhaustivelyAnnotatedProperties
44
+ sequence:
45
+ - name: propertyId
46
+ dtype: string
47
+ - name: propertyName
48
+ dtype: string
49
+ - name: propertyDescription
50
+ dtype: string
51
+ - name: facts
52
+ sequence:
53
+ - name: factId
54
+ dtype: string
55
+ - name: propertyId
56
+ dtype: string
57
+ - name: humanReadable
58
+ dtype: string
59
+ - name: annotatedPassage
60
+ dtype: string
61
+ - name: subjectStart
62
+ dtype: int32
63
+ - name: subjectEnd
64
+ dtype: int32
65
+ - name: subjectText
66
+ dtype: string
67
+ - name: subjectUri
68
+ dtype: string
69
+ - name: objectStart
70
+ dtype: int32
71
+ - name: objectEnd
72
+ dtype: int32
73
+ - name: objectText
74
+ dtype: string
75
+ - name: objectUri
76
+ dtype: string
77
+ splits:
78
+ - name: train
79
+ num_bytes: 10161415
80
+ num_examples: 3977
81
+ download_size: 14119313
82
+ dataset_size: 10161415
83
+ - config_name: knet_tokenized
84
+ features:
85
+ - name: doc_id
86
+ dtype: string
87
+ - name: passage_id
88
+ dtype: string
89
+ - name: fact_id
90
+ dtype: string
91
+ - name: tokens
92
+ sequence: string
93
+ - name: subj_start
94
+ dtype: int32
95
+ - name: subj_end
96
+ dtype: int32
97
+ - name: subj_type
98
+ dtype:
99
+ class_label:
100
+ names:
101
+ '0': O
102
+ '1': PER
103
+ '2': ORG
104
+ '3': LOC
105
+ '4': DATE
106
+ - name: subj_uri
107
+ dtype: string
108
+ - name: obj_start
109
+ dtype: int32
110
+ - name: obj_end
111
+ dtype: int32
112
+ - name: obj_type
113
+ dtype:
114
+ class_label:
115
+ names:
116
+ '0': O
117
+ '1': PER
118
+ '2': ORG
119
+ '3': LOC
120
+ '4': DATE
121
+ - name: obj_uri
122
+ dtype: string
123
+ - name: relation
124
+ dtype:
125
+ class_label:
126
+ names:
127
+ '0': NO_RELATION
128
+ '1': DATE_OF_BIRTH
129
+ '2': DATE_OF_DEATH
130
+ '3': PLACE_OF_RESIDENCE
131
+ '4': PLACE_OF_BIRTH
132
+ '5': NATIONALITY
133
+ '6': EMPLOYEE_OR_MEMBER_OF
134
+ '7': EDUCATED_AT
135
+ '8': POLITICAL_AFFILIATION
136
+ '9': CHILD_OF
137
+ '10': SPOUSE
138
+ '11': DATE_FOUNDED
139
+ '12': HEADQUARTERS
140
+ '13': SUBSIDIARY_OF
141
+ '14': FOUNDED_BY
142
+ '15': CEO
143
+ splits:
144
+ - name: train
145
+ num_bytes: 4511963
146
+ num_examples: 10895
147
+ download_size: 14119313
148
+ dataset_size: 4511963
149
+ - config_name: knet_re
150
+ features:
151
+ - name: documentId
152
+ dtype: string
153
+ - name: passageId
154
+ dtype: string
155
+ - name: factId
156
+ dtype: string
157
+ - name: passageText
158
+ dtype: string
159
+ - name: humanReadable
160
+ dtype: string
161
+ - name: annotatedPassage
162
+ dtype: string
163
+ - name: subjectStart
164
+ dtype: int32
165
+ - name: subjectEnd
166
+ dtype: int32
167
+ - name: subjectText
168
+ dtype: string
169
+ - name: subjectType
170
+ dtype:
171
+ class_label:
172
+ names:
173
+ '0': O
174
+ '1': PER
175
+ '2': ORG
176
+ '3': LOC
177
+ '4': DATE
178
+ - name: subjectUri
179
+ dtype: string
180
+ - name: objectStart
181
+ dtype: int32
182
+ - name: objectEnd
183
+ dtype: int32
184
+ - name: objectText
185
+ dtype: string
186
+ - name: objectType
187
+ dtype:
188
+ class_label:
189
+ names:
190
+ '0': O
191
+ '1': PER
192
+ '2': ORG
193
+ '3': LOC
194
+ '4': DATE
195
+ - name: objectUri
196
+ dtype: string
197
+ - name: relation
198
+ dtype:
199
+ class_label:
200
+ names:
201
+ '0': NO_RELATION
202
+ '1': DATE_OF_BIRTH
203
+ '2': DATE_OF_DEATH
204
+ '3': PLACE_OF_RESIDENCE
205
+ '4': PLACE_OF_BIRTH
206
+ '5': NATIONALITY
207
+ '6': EMPLOYEE_OR_MEMBER_OF
208
+ '7': EDUCATED_AT
209
+ '8': POLITICAL_AFFILIATION
210
+ '9': CHILD_OF
211
+ '10': SPOUSE
212
+ '11': DATE_FOUNDED
213
+ '12': HEADQUARTERS
214
+ '13': SUBSIDIARY_OF
215
+ '14': FOUNDED_BY
216
+ '15': CEO
217
+ splits:
218
+ - name: train
219
+ num_bytes: 6098219
220
+ num_examples: 10895
221
+ download_size: 14119313
222
+ dataset_size: 6098219
223
+ ---
224
+ # Dataset Card for "KnowledgeNet"
225
+ ## Table of Contents
226
+ - [Table of Contents](#table-of-contents)
227
+ - [Dataset Description](#dataset-description)
228
+ - [Dataset Summary](#dataset-summary)
229
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
230
+ - [Languages](#languages)
231
+ - [Dataset Structure](#dataset-structure)
232
+ - [Data Instances](#data-instances)
233
+ - [Data Fields](#data-fields)
234
+ - [Data Splits](#data-splits)
235
+ - [Dataset Creation](#dataset-creation)
236
+ - [Curation Rationale](#curation-rationale)
237
+ - [Source Data](#source-data)
238
+ - [Annotations](#annotations)
239
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
240
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
241
+ - [Social Impact of Dataset](#social-impact-of-dataset)
242
+ - [Discussion of Biases](#discussion-of-biases)
243
+ - [Other Known Limitations](#other-known-limitations)
244
+ - [Additional Information](#additional-information)
245
+ - [Dataset Curators](#dataset-curators)
246
+ - [Licensing Information](#licensing-information)
247
+ - [Citation Information](#citation-information)
248
+ - [Contributions](#contributions)
249
+ ## Dataset Description
250
+ - **Repository:** [knowledge-net](https://github.com/diffbot/knowledge-net)
251
+ - **Paper:** [KnowledgeNet: A Benchmark Dataset for Knowledge Base Population](https://aclanthology.org/D19-1069/)
252
+ - **Size of downloaded dataset files:** 12.59 MB
253
+ - **Size of the generated dataset:** 6.1 MB
254
+ ### Dataset Summary
255
+ KnowledgeNet is a benchmark dataset for the task of automatically populating a knowledge base (Wikidata) with facts
256
+ expressed in natural language text on the web. KnowledgeNet provides text exhaustively annotated with facts, thus
257
+ enabling the holistic end-to-end evaluation of knowledge base population systems as a whole, unlike previous benchmarks
258
+ that are more suitable for the evaluation of individual subcomponents (e.g., entity linking, relation extraction).
259
+
260
+ For instance, the dataset contains text expressing the fact (Gennaro Basile; RESIDENCE; Moravia), in the passage:
261
+ "Gennaro Basile was an Italian painter, born in Naples but active in the German-speaking countries. He settled at Brünn,
262
+ in Moravia, and lived about 1756..."
263
+
264
+ For a description of the dataset and baseline systems, please refer to their
265
+ [EMNLP paper](https://github.com/diffbot/knowledge-net/blob/master/knowledgenet-emnlp-cameraready.pdf).
266
+
267
+ Note: This Datasetreader currently only supports the `train` split and does not contain negative examples.
268
+ In addition to the original format this repository also provides two version (`knet_re`, `knet_tokenized`) that are
269
+ easier to use for simple relation extraction. You can load them with
270
+ `datasets.load_dataset("DFKI-SLT/knowledge_net", name="<config>")`.
271
+
272
+ ### Supported Tasks and Leaderboards
273
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
274
+
275
+ ### Languages
276
+ The language in the dataset is English.
277
+
278
+ ## Dataset Structure
279
+ ### Data Instances
280
+ #### knet
281
+ - **Size of downloaded dataset files:** 12.59 MB
282
+ - **Size of the generated dataset:** 10.16 MB
283
+
284
+ An example of 'train' looks as follows:
285
+ ```json
286
+ {
287
+ "fold": 2,
288
+ "documentId": "8313",
289
+ "source": "DBpedia Abstract",
290
+ "documentText": "Gennaro Basile\n\nGennaro Basile was an Italian painter, born in Naples but active in the German-speaking countries. He settled at Brünn, in Moravia, and lived about 1756. His best picture is the altar-piece in the chapel of the chateau at Seeberg, in Salzburg. Most of his works remained in Moravia.",
291
+ "passages": [
292
+ {
293
+ "passageId": "8313:16:114",
294
+ "passageStart": 16,
295
+ "passageEnd": 114,
296
+ "passageText": "Gennaro Basile was an Italian painter, born in Naples but active in the German-speaking countries.",
297
+ "exhaustivelyAnnotatedProperties": [
298
+ {
299
+ "propertyId": "12",
300
+ "propertyName": "PLACE_OF_BIRTH",
301
+ "propertyDescription": "Describes the relationship between a person and the location where she/he was born."
302
+ }
303
+ ],
304
+ "facts": [
305
+ {
306
+ "factId": "8313:16:30:63:69:12",
307
+ "propertyId": "12",
308
+ "humanReadable": "<Gennaro Basile> <PLACE_OF_BIRTH> <Naples>",
309
+ "annotatedPassage": "<Gennaro Basile> was an Italian painter, born in <Naples> but active in the German-speaking countries.",
310
+ "subjectStart": 16,
311
+ "subjectEnd": 30,
312
+ "subjectText": "Gennaro Basile",
313
+ "subjectUri": "http://www.wikidata.org/entity/Q19517888",
314
+ "objectStart": 63,
315
+ "objectEnd": 69,
316
+ "objectText": "Naples",
317
+ "objectUri": "http://www.wikidata.org/entity/Q2634"
318
+ }
319
+ ]
320
+ },
321
+ {
322
+ "passageId": "8313:115:169",
323
+ "passageStart": 115,
324
+ "passageEnd": 169,
325
+ "passageText": "He settled at Brünn, in Moravia, and lived about 1756.",
326
+ "exhaustivelyAnnotatedProperties": [
327
+ {
328
+ "propertyId": "11",
329
+ "propertyName": "PLACE_OF_RESIDENCE",
330
+ "propertyDescription": "Describes the relationship between a person and the location where she/he lives/lived."
331
+ },
332
+ {
333
+ "propertyId": "12",
334
+ "propertyName": "PLACE_OF_BIRTH",
335
+ "propertyDescription": "Describes the relationship between a person and the location where she/he was born."
336
+ }
337
+ ],
338
+ "facts": [
339
+ {
340
+ "factId": "8313:115:117:129:134:11",
341
+ "propertyId": "11",
342
+ "humanReadable": "<He> <PLACE_OF_RESIDENCE> <Brünn>",
343
+ "annotatedPassage": "<He> settled at <Brünn>, in Moravia, and lived about 1756.",
344
+ "subjectStart": 115,
345
+ "subjectEnd": 117,
346
+ "subjectText": "He",
347
+ "subjectUri": "http://www.wikidata.org/entity/Q19517888",
348
+ "objectStart": 129,
349
+ "objectEnd": 134,
350
+ "objectText": "Brünn",
351
+ "objectUri": "http://www.wikidata.org/entity/Q14960"
352
+ },
353
+ {
354
+ "factId": "8313:115:117:139:146:11",
355
+ "propertyId": "11",
356
+ "humanReadable": "<He> <PLACE_OF_RESIDENCE> <Moravia>",
357
+ "annotatedPassage": "<He> settled at Brünn, in <Moravia>, and lived about 1756.",
358
+ "subjectStart": 115,
359
+ "subjectEnd": 117,
360
+ "subjectText": "He",
361
+ "subjectUri": "http://www.wikidata.org/entity/Q19517888",
362
+ "objectStart": 139,
363
+ "objectEnd": 146,
364
+ "objectText": "Moravia",
365
+ "objectUri": "http://www.wikidata.org/entity/Q43266"
366
+ }
367
+ ]
368
+ }
369
+ ]
370
+ }
371
+ ```
372
+
373
+ #### knet_re
374
+ - **Size of downloaded dataset files:** 12.59 MB
375
+ - **Size of the generated dataset:** 6.1 MB
376
+
377
+ An example of 'train' looks as follows:
378
+ ```json
379
+ {
380
+ "documentId": "7",
381
+ "passageId": "7:23:206",
382
+ "factId": "7:23:44:138:160:1",
383
+ "passageText": "Tata Chemicals Europe (formerly Brunner Mond (UK) Limited) is a UK-based chemicals company that is a subsidiary of Tata Chemicals Limited, itself a part of the India-based Tata Group.",
384
+ "humanReadable": "<Tata Chemicals Europe> <SUBSIDIARY_OF> <Tata Chemicals Limited>",
385
+ "annotatedPassage": "<Tata Chemicals Europe> (formerly Brunner Mond (UK) Limited) is a UK-based chemicals company that is a subsidiary of <Tata Chemicals Limited>, itself a part of the India-based Tata Group.",
386
+ "subjectStart": 0,
387
+ "subjectEnd": 21,
388
+ "subjectText": "Tata Chemicals Europe",
389
+ "subjectType": 2,
390
+ "subjectUri": "",
391
+ "objectStart": 115,
392
+ "objectEnd": 137,
393
+ "objectText": "Tata Chemicals Limited",
394
+ "objectType": 2,
395
+ "objectUri": "http://www.wikidata.org/entity/Q2331365",
396
+ "relation": 13
397
+ }
398
+ ```
399
+
400
+ #### knet_tokenized
401
+ - **Size of downloaded dataset files:** 12.59 MB
402
+ - **Size of the generated dataset:** 4.5 MB
403
+
404
+ An example of 'train' looks as follows:
405
+ ```json
406
+ {
407
+ "doc_id": "7",
408
+ "passage_id": "7:23:206",
409
+ "fact_id": "7:162:168:183:205:1",
410
+ "tokens": ["Tata", "Chemicals", "Europe", "(", "formerly", "Brunner", "Mond", "(", "UK", ")", "Limited", ")", "is", "a", "UK", "-", "based", "chemicals", "company", "that", "is", "a", "subsidiary", "of", "Tata", "Chemicals", "Limited", ",", "itself", "a", "part", "of", "the", "India", "-", "based", "Tata", "Group", "."],
411
+ "subj_start": 28,
412
+ "subj_end": 29,
413
+ "subj_type": 2,
414
+ "subj_uri": "http://www.wikidata.org/entity/Q2331365",
415
+ "obj_start": 33,
416
+ "obj_end": 38,
417
+ "obj_type": 2,
418
+ "obj_uri": "http://www.wikidata.org/entity/Q331715",
419
+ "relation": 13
420
+ }
421
+ ```
422
+ ### Data Fields
423
+
424
+ #### knet
425
+ - `fold`: the fold, a `int` feature.
426
+ - `documentId`: the document id, a `string` feature.
427
+ - `source`: the source, a `string` feature.
428
+ - `documenText`: the document text, a `string` feature.
429
+ - `passages`: the list of passages, a `list` of `dict`.
430
+ - `passageId`: the passage id, a `string` feature.
431
+ - `passageStart`: the passage start, a `int` feature.
432
+ - `passageEnd`: the passage end, a `int` feature.
433
+ - `passageText`: the passage text, a `string` feature.
434
+ - `exhaustivelyAnnotatedProperties`: the list of exhaustively annotated properties, a `list` of `dict`.
435
+ - `propertyId`: the property id, a `string` feature.
436
+ - `propertyName`: the property name, a `string` feature.
437
+ - `propertyDescription`: the property description, a `string` feature.
438
+ - `facts`: the list of facts, a `list` of `dict`.
439
+ - `factId`: the fact id, a `string` feature.
440
+ - `propertyId`: the property id, a `string` feature.
441
+ - `humanReadable`: the human readable annotation, a `string` feature.
442
+ - `annotatedPassage`: the annotated passage, a `string` feature.
443
+ - `subjectStart`: the subject start, a `int` feature.
444
+ - `subjectEnd`: the subject end, a `int` feature.
445
+ - `subjectText`: the subject text, a `string` feature.
446
+ - `subjectUri`: the subject uri, a `string` feature.
447
+ - `objectStart`: the object start, a `int` feature.
448
+ - `objectEnd`: the object end, a `int` feature.
449
+ - `objectText`: the object text, a `string` feature.
450
+ - `objectUri`: the object uri, a `string` feature.
451
+
452
+ #### knet_re
453
+ - `documentId`: the document id, a `string` feature.
454
+ - `passageId`: the passage id, a `string` feature.
455
+ - `passageText`: the passage text, a `string` feature.
456
+ - `factId`: the fact id, a `string` feature.
457
+ - `humanReadable`: human-readable annotation, a `string` features.
458
+ - `annotatedPassage`: annotated passage, a `string` feature.
459
+ - `subjectStart`: the index of the start character of the relation subject mention, an `ìnt` feature.
460
+ - `subjectEnd`: the index of the end character of the relation subject mention, exclusive, an `ìnt` feature.
461
+ - `subjectText`: the text the subject mention, a `string` feature.
462
+ - `subjectType`: the NER type of the subject mention, a `string` classification label.
463
+
464
+ ```json
465
+ {"O": 0, "PER": 1, "ORG": 2, "LOC": 3, "DATE": 4}
466
+ ```
467
+
468
+ - `subjectUri`: the Wikidata URI of the subject mention, a `string` feature.
469
+ - `objectStart`: the index of the start character of the relation object mention, an `ìnt` feature.
470
+ - `objectEnd`: the index of the end character of the relation object mention, exclusive, an `ìnt` feature.
471
+ - `objectText`: the text the object mention, a `string` feature.
472
+ - `objectType`: the NER type of the object mention, a `string` classification label.
473
+
474
+ ```json
475
+ {"O": 0, "PER": 1, "ORG": 2, "LOC": 3, "DATE": 4}
476
+ ```
477
+
478
+ - `objectUri`: the Wikidata URI of the object mention, a `string` feature.
479
+ - `relation`: the relation label of this instance, a `string` classification label.
480
+
481
+ ```json
482
+ {"NO_RELATION": 0, "DATE_OF_BIRTH": 1, "DATE_OF_DEATH": 2, "PLACE_OF_RESIDENCE": 3, "PLACE_OF_BIRTH": 4, "NATIONALITY": 5, "EMPLOYEE_OR_MEMBER_OF": 6, "EDUCATED_AT": 7, "POLITICAL_AFFILIATION": 8, "CHILD_OF": 9, "SPOUSE": 10, "DATE_FOUNDED": 11, "HEADQUARTERS": 12, "SUBSIDIARY_OF": 13, "FOUNDED_BY": 14, "CEO": 15}
483
+ ```
484
+
485
+ #### knet_tokenized
486
+ - `doc_id`: the document id, a `string` feature.
487
+ - `passage_id`: the passage id, a `string` feature.
488
+ - `factId`: the fact id, a `string` feature.
489
+ - `tokens`: the list of tokens of this passage, obtained with spaCy, a `list` of `string` features.
490
+ - `subj_start`: the index of the start token of the relation subject mention, an `ìnt` feature.
491
+ - `subj_end`: the index of the end token of the relation subject mention, exclusive, an `ìnt` feature.
492
+ - `subj_type`: the NER type of the subject mention, a `string` classification label.
493
+
494
+ ```json
495
+ {"O": 0, "PER": 1, "ORG": 2, "LOC": 3, "DATE": 4}
496
+ ```
497
+
498
+
499
+ - `subj_uri`: the Wikidata URI of the subject mention, a `string` feature.
500
+ - `obj_start`: the index of the start token of the relation object mention, an `ìnt` feature.
501
+ - `obj_end`: the index of the end token of the relation object mention, exclusive, an `ìnt` feature.
502
+ - `obj_type`: the NER type of the object mention, a `string` classification label.
503
+
504
+ ```json
505
+ {"O": 0, "PER": 1, "ORG": 2, "LOC": 3, "DATE": 4}
506
+ ```
507
+
508
+ - `obj_uri`: the Wikidata URI of the object mention, a `string` feature.
509
+ - `relation`: the relation label of this instance, a `string` classification label.
510
+
511
+ ```json
512
+ {"NO_RELATION": 0, "DATE_OF_BIRTH": 1, "DATE_OF_DEATH": 2, "PLACE_OF_RESIDENCE": 3, "PLACE_OF_BIRTH": 4, "NATIONALITY": 5, "EMPLOYEE_OR_MEMBER_OF": 6, "EDUCATED_AT": 7, "POLITICAL_AFFILIATION": 8, "CHILD_OF": 9, "SPOUSE": 10, "DATE_FOUNDED": 11, "HEADQUARTERS": 12, "SUBSIDIARY_OF": 13, "FOUNDED_BY": 14, "CEO": 15}
513
+ ```
514
+
515
+
516
+ ### Data Splits
517
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
518
+ ## Dataset Creation
519
+ ### Curation Rationale
520
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
521
+ ### Source Data
522
+ #### Initial Data Collection and Normalization
523
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
524
+ #### Who are the source language producers?
525
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
526
+ ### Annotations
527
+ #### Annotation process
528
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
529
+ are labeled as no_relation.
530
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
531
+ ### Personal and Sensitive Information
532
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
533
+ ## Considerations for Using the Data
534
+ ### Social Impact of Dataset
535
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
536
+ ### Discussion of Biases
537
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
538
+ ### Other Known Limitations
539
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
540
+ ## Additional Information
541
+ ### Dataset Curators
542
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
543
+ ### Licensing Information
544
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
545
+ ### Citation Information
546
+ ```
547
+ @inproceedings{mesquita-etal-2019-knowledgenet,
548
+ title = "{K}nowledge{N}et: A Benchmark Dataset for Knowledge Base Population",
549
+ author = "Mesquita, Filipe and
550
+ Cannaviccio, Matteo and
551
+ Schmidek, Jordan and
552
+ Mirza, Paramita and
553
+ Barbosa, Denilson",
554
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
555
+ month = nov,
556
+ year = "2019",
557
+ address = "Hong Kong, China",
558
+ publisher = "Association for Computational Linguistics",
559
+ url = "https://aclanthology.org/D19-1069",
560
+ doi = "10.18653/v1/D19-1069",
561
+ pages = "749--758",}
562
+ ```
563
+
564
+ ### Contributions
565
+ Thanks to [@phucdev](https://github.com/phucdev) for adding this dataset.
knowledge_net.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """The KnowledgeNet dataset for automatically populating a knowledge base"""
17
+
18
+ import json
19
+ import re
20
+ import datasets
21
+
22
+ _CITATION = """\
23
+ @inproceedings{mesquita-etal-2019-knowledgenet,
24
+ title = "{K}nowledge{N}et: A Benchmark Dataset for Knowledge Base Population",
25
+ author = "Mesquita, Filipe and
26
+ Cannaviccio, Matteo and
27
+ Schmidek, Jordan and
28
+ Mirza, Paramita and
29
+ Barbosa, Denilson",
30
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
31
+ month = nov,
32
+ year = "2019",
33
+ address = "Hong Kong, China",
34
+ publisher = "Association for Computational Linguistics",
35
+ url = "https://aclanthology.org/D19-1069",
36
+ doi = "10.18653/v1/D19-1069",
37
+ pages = "749--758",}
38
+ """
39
+
40
+ _DESCRIPTION = """\
41
+ KnowledgeNet is a benchmark dataset for the task of automatically populating a knowledge base (Wikidata) with facts
42
+ expressed in natural language text on the web. KnowledgeNet provides text exhaustively annotated with facts, thus
43
+ enabling the holistic end-to-end evaluation of knowledge base population systems as a whole, unlike previous benchmarks
44
+ that are more suitable for the evaluation of individual subcomponents (e.g., entity linking, relation extraction).
45
+
46
+ For instance, the dataset contains text expressing the fact (Gennaro Basile; RESIDENCE; Moravia), in the passage:
47
+ "Gennaro Basile was an Italian painter, born in Naples but active in the German-speaking countries. He settled at Brünn,
48
+ in Moravia, and lived about 1756..."
49
+
50
+ For a description of the dataset and baseline systems, please refer to their
51
+ [EMNLP paper](https://github.com/diffbot/knowledge-net/blob/master/knowledgenet-emnlp-cameraready.pdf).
52
+
53
+ Note: This Datasetreader currently only supports the `train` split and does not contain negative examples
54
+ """
55
+
56
+ _HOMEPAGE = "https://github.com/diffbot/knowledge-net"
57
+
58
+ _LICENSE = ""
59
+
60
+ # The HuggingFace dataset library don't host the datasets but only point to the original files
61
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
62
+ _URLS = {
63
+ "train": "https://raw.githubusercontent.com/diffbot/knowledge-net/master/dataset/train.json",
64
+ "test": "https://raw.githubusercontent.com/diffbot/knowledge-net/master/dataset/test-no-facts.json"
65
+ }
66
+
67
+ _VERSION = datasets.Version("1.1.0")
68
+
69
+ _CLASS_LABELS = [
70
+ "NO_RELATION",
71
+ "DATE_OF_BIRTH",
72
+ "DATE_OF_DEATH",
73
+ "PLACE_OF_RESIDENCE",
74
+ "PLACE_OF_BIRTH",
75
+ "NATIONALITY",
76
+ "EMPLOYEE_OR_MEMBER_OF",
77
+ "EDUCATED_AT",
78
+ "POLITICAL_AFFILIATION",
79
+ "CHILD_OF",
80
+ "SPOUSE",
81
+ "DATE_FOUNDED",
82
+ "HEADQUARTERS",
83
+ "SUBSIDIARY_OF",
84
+ "FOUNDED_BY",
85
+ "CEO"
86
+ ]
87
+
88
+ _NER_CLASS_LABELS = [
89
+ "O",
90
+ "PER",
91
+ "ORG",
92
+ "LOC",
93
+ "DATE"
94
+ ]
95
+
96
+
97
+ def get_entity_types_from_relation(relation_label):
98
+ if relation_label == "DATE_OF_BIRTH":
99
+ subj_type = "PER"
100
+ obj_type = "DATE"
101
+ elif relation_label == "DATE_OF_DEATH":
102
+ subj_type = "PER"
103
+ obj_type = "DATE"
104
+ elif relation_label == "PLACE_OF_RESIDENCE":
105
+ subj_type = "PER"
106
+ obj_type = "LOC"
107
+ elif relation_label == "PLACE_OF_BIRTH":
108
+ subj_type = "PER"
109
+ obj_type = "LOC"
110
+ elif relation_label == "NATIONALITY":
111
+ subj_type = "PER"
112
+ obj_type = "LOC"
113
+ elif relation_label == "EMPLOYEE_OR_MEMBER_OF":
114
+ subj_type = "PER"
115
+ obj_type = "ORG"
116
+ elif relation_label == "EDUCATED_AT":
117
+ subj_type = "PER"
118
+ obj_type = "ORG"
119
+ elif relation_label == "POLITICAL_AFFILIATION":
120
+ subj_type = "PER"
121
+ obj_type = "ORG"
122
+ elif relation_label == "CHILD_OF":
123
+ subj_type = "PER"
124
+ obj_type = "PER"
125
+ elif relation_label == "SPOUSE":
126
+ subj_type = "PER"
127
+ obj_type = "PER"
128
+ elif relation_label == "DATE_FOUNDED":
129
+ subj_type = "ORG"
130
+ obj_type = "DATE"
131
+ elif relation_label == "HEADQUARTERS":
132
+ subj_type = "ORG"
133
+ obj_type = "LOC"
134
+ elif relation_label == "SUBSIDIARY_OF":
135
+ subj_type = "ORG"
136
+ obj_type = "ORG"
137
+ elif relation_label == "FOUNDED_BY":
138
+ subj_type = "ORG"
139
+ obj_type = "PER"
140
+ elif relation_label == "CEO":
141
+ subj_type = "ORG"
142
+ obj_type = "PER"
143
+ else:
144
+ raise ValueError(f"Unknown relation label: {relation_label}")
145
+ return subj_type, obj_type
146
+
147
+
148
+ def remove_contiguous_whitespaces(text):
149
+ # +1 to account for regular whitespace at the beginning
150
+ contiguous_whitespaces_indices = [(m.start(0) + 1, m.end(0)) for m in re.finditer(' +', text)]
151
+ cleaned_text = re.sub(" +", " ", text)
152
+ return cleaned_text, contiguous_whitespaces_indices
153
+
154
+
155
+ def fix_char_index(char_index, contiguous_whitespaces_indices):
156
+ new_char_index = char_index
157
+ offset = 0
158
+ for ws_start, ws_end in contiguous_whitespaces_indices:
159
+ if char_index >= ws_end:
160
+ offset = offset + (ws_end - ws_start)
161
+ new_char_index -= offset
162
+ return new_char_index
163
+
164
+
165
+ class KnowledgeNet(datasets.GeneratorBasedBuilder):
166
+ """The KnowledgeNet dataset for automatically populating a knowledge base"""
167
+
168
+ BUILDER_CONFIGS = [
169
+ datasets.BuilderConfig(
170
+ name="knet", version=_VERSION, description="The original KnowledgeNet formatted for RE."
171
+ ),
172
+ datasets.BuilderConfig(
173
+ name="knet_re", version=_VERSION, description="The original KnowledgeNet formatted for RE."
174
+ ),
175
+ datasets.BuilderConfig(
176
+ name="knet_tokenized", version=_VERSION, description="KnowledgeNet tokenized and reformatted."
177
+ ),
178
+ ]
179
+
180
+ DEFAULT_CONFIG_NAME = "knet" # type: ignore
181
+
182
+ def _info(self):
183
+ if self.config.name == "knet_tokenized":
184
+ features = datasets.Features(
185
+ {
186
+ "doc_id": datasets.Value("string"),
187
+ "passage_id": datasets.Value("string"),
188
+ "fact_id": datasets.Value("string"),
189
+ "tokens": datasets.Sequence(datasets.Value("string")),
190
+ "subj_start": datasets.Value("int32"),
191
+ "subj_end": datasets.Value("int32"),
192
+ "subj_type": datasets.ClassLabel(names=_NER_CLASS_LABELS),
193
+ "subj_uri": datasets.Value("string"),
194
+ "obj_start": datasets.Value("int32"),
195
+ "obj_end": datasets.Value("int32"),
196
+ "obj_type": datasets.ClassLabel(names=_NER_CLASS_LABELS),
197
+ "obj_uri": datasets.Value("string"),
198
+ "relation": datasets.ClassLabel(names=_CLASS_LABELS),
199
+ }
200
+ )
201
+ elif self.config.name == "knet_re":
202
+ features = datasets.Features(
203
+ {
204
+ "documentId": datasets.Value("string"),
205
+ "passageId": datasets.Value("string"),
206
+ "factId": datasets.Value("string"),
207
+ "passageText": datasets.Value("string"),
208
+ "humanReadable": datasets.Value("string"),
209
+ "annotatedPassage": datasets.Value("string"),
210
+ "subjectStart": datasets.Value("int32"),
211
+ "subjectEnd": datasets.Value("int32"),
212
+ "subjectText": datasets.Value("string"),
213
+ "subjectType": datasets.ClassLabel(names=_NER_CLASS_LABELS),
214
+ "subjectUri": datasets.Value("string"),
215
+ "objectStart": datasets.Value("int32"),
216
+ "objectEnd": datasets.Value("int32"),
217
+ "objectText": datasets.Value("string"),
218
+ "objectType": datasets.ClassLabel(names=_NER_CLASS_LABELS),
219
+ "objectUri": datasets.Value("string"),
220
+ "relation": datasets.ClassLabel(names=_CLASS_LABELS),
221
+ }
222
+ )
223
+ else:
224
+ features = datasets.Features(
225
+ {
226
+ "fold": datasets.Value("int32"),
227
+ "documentId": datasets.Value("string"),
228
+ "source": datasets.Value("string"),
229
+ "documentText": datasets.Value("string"),
230
+ "passages": [{
231
+ "passageId": datasets.Value("string"),
232
+ "passageStart": datasets.Value("int32"),
233
+ "passageEnd": datasets.Value("int32"),
234
+ "passageText": datasets.Value("string"),
235
+ "exhaustivelyAnnotatedProperties": [{
236
+ "propertyId": datasets.Value("string"),
237
+ "propertyName": datasets.Value("string"),
238
+ "propertyDescription": datasets.Value("string"),
239
+ }],
240
+ "facts": [{
241
+ "factId": datasets.Value("string"),
242
+ "propertyId": datasets.Value("string"),
243
+ "humanReadable": datasets.Value("string"),
244
+ "annotatedPassage": datasets.Value("string"),
245
+ "subjectStart": datasets.Value("int32"),
246
+ "subjectEnd": datasets.Value("int32"),
247
+ "subjectText": datasets.Value("string"),
248
+ "subjectUri": datasets.Value("string"),
249
+ "objectStart": datasets.Value("int32"),
250
+ "objectEnd": datasets.Value("int32"),
251
+ "objectText": datasets.Value("string"),
252
+ "objectUri": datasets.Value("string"),
253
+ }],
254
+ }],
255
+ }
256
+ )
257
+
258
+ return datasets.DatasetInfo(
259
+ # This is the description that will appear on the datasets page.
260
+ description=_DESCRIPTION,
261
+ # This defines the different columns of the dataset and their types
262
+ features=features, # Here we define them above because they are different between the two configurations
263
+ # If there's a common (input, target) tuple from the features,
264
+ # specify them here. They'll be used if as_supervised=True in
265
+ # builder.as_dataset.
266
+ supervised_keys=None,
267
+ # Homepage of the dataset for documentation
268
+ homepage=_HOMEPAGE,
269
+ # License for the dataset if available
270
+ license=_LICENSE,
271
+ # Citation for the dataset
272
+ citation=_CITATION,
273
+ )
274
+
275
+ def _split_generators(self, dl_manager):
276
+ """Returns SplitGenerators."""
277
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
278
+
279
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
280
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
281
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
282
+
283
+ downloaded_files = dl_manager.download_and_extract(_URLS)
284
+ # splits = [datasets.Split.TRAIN, datasets.Split.TEST]
285
+ splits = [datasets.Split.TRAIN]
286
+ return [datasets.SplitGenerator(name=i, gen_kwargs={"filepath": downloaded_files[str(i)], "split": i})
287
+ for i in splits]
288
+
289
+ def _generate_examples(self, filepath, split):
290
+ """Yields examples."""
291
+ # This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
292
+ # It is in charge of opening the given file and yielding (key, example) tuples from the dataset
293
+ # The key is not important, it's more here for legacy reason (legacy from tfds)
294
+ if self.config.name == "knet_tokenized":
295
+ from spacy.lang.en import English
296
+ word_splitter = English()
297
+ else:
298
+ word_splitter = None
299
+ with open(filepath, encoding="utf-8") as f:
300
+ for line in f:
301
+ doc = json.loads(line)
302
+ if self.config.name == "knet":
303
+ yield doc["documentId"], doc
304
+ else:
305
+ for passage in doc["passages"]:
306
+ # Skip passages without facts right away
307
+ if len(passage["facts"]) == 0:
308
+ continue
309
+
310
+ text = passage["passageText"]
311
+ passage_start = passage["passageStart"]
312
+
313
+ if self.config.name == "knet_tokenized":
314
+ cleaned_text, contiguous_ws_indices = remove_contiguous_whitespaces(text)
315
+ spacy_doc = word_splitter(cleaned_text)
316
+ word_tokens = [t.text for t in spacy_doc]
317
+ for fact in passage["facts"]:
318
+ subj_start = fix_char_index(fact["subjectStart"] - passage_start, contiguous_ws_indices)
319
+ subj_end = fix_char_index(fact["subjectEnd"] - passage_start, contiguous_ws_indices)
320
+ obj_start = fix_char_index(fact["objectStart"] - passage_start, contiguous_ws_indices)
321
+ obj_end = fix_char_index(fact["objectEnd"] - passage_start, contiguous_ws_indices)
322
+ # Get exclusive token spans from char spans
323
+ subj_span = spacy_doc.char_span(subj_start, subj_end, alignment_mode="expand")
324
+ obj_span = spacy_doc.char_span(obj_start, obj_end, alignment_mode="expand")
325
+
326
+ relation_label = fact["humanReadable"].split(">")[1][2:]
327
+ subj_type, obj_type = get_entity_types_from_relation(relation_label)
328
+ id_ = fact["factId"]
329
+
330
+ yield id_, {
331
+ "doc_id": doc["documentId"],
332
+ "passage_id": passage["passageId"],
333
+ "fact_id": id_,
334
+ "tokens": word_tokens,
335
+ "subj_start": subj_span.start,
336
+ "subj_end": subj_span.end,
337
+ "subj_type": subj_type,
338
+ "subj_uri": fact["subjectUri"],
339
+ "obj_start": obj_span.start,
340
+ "obj_end": obj_span.end,
341
+ "obj_type": obj_type,
342
+ "obj_uri": fact["objectUri"],
343
+ "relation": relation_label
344
+ }
345
+ else:
346
+ for fact in passage["facts"]:
347
+ relation_label = fact["humanReadable"].split(">")[1][2:]
348
+ subj_type, obj_type = get_entity_types_from_relation(relation_label)
349
+ id_ = fact["factId"]
350
+ yield id_, {
351
+ "documentId": doc["documentId"],
352
+ "passageId": passage["passageId"],
353
+ "passageText": passage["passageText"],
354
+ "factId": id_,
355
+ "humanReadable": fact["humanReadable"],
356
+ "annotatedPassage": fact["annotatedPassage"],
357
+ "subjectStart": fact["subjectStart"] - passage_start,
358
+ "subjectEnd": fact["subjectEnd"] - passage_start,
359
+ "subjectText": fact["subjectText"],
360
+ "subjectType": subj_type,
361
+ "subjectUri": fact["subjectUri"],
362
+ "objectStart": fact["objectStart"] - passage_start,
363
+ "objectEnd": fact["objectEnd"] - passage_start,
364
+ "objectText": fact["objectText"],
365
+ "objectType": obj_type,
366
+ "objectUri": fact["objectUri"],
367
+ "relation": relation_label
368
+ }