File size: 21,965 Bytes
eb58348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
---
annotations_creators:
- expert-generated
language:
- en
language_creators:
- found
license: []
multilinguality:
- monolingual
pretty_name: CrossRE is a cross-domain dataset for relation extraction
size_categories:
- 10K<n<100K
source_datasets: 
- extended|cross_ner
tags:
- cross domain
- ai
- news
- music
- literature
- politics
- science
task_categories:
- text-classification
task_ids:
- multi-class-classification
dataset_info:
- config_name: ai
  features:
  - name: doc_key
    dtype: string
  - name: sentence
    sequence: string
  - name: ner
    sequence:
    - name: id-start
      dtype: int32
    - name: id-end
      dtype: int32
    - name: entity-type
      dtype: string
  - name: relations
    sequence:
    - name: id_1-start
      dtype: int32
    - name: id_1-end
      dtype: int32
    - name: id_2-start
      dtype: int32
    - name: id_2-end
      dtype: int32
    - name: relation-type
      dtype: string
    - name: Exp
      dtype: string
    - name: Un
      dtype: bool
    - name: SA
      dtype: bool
  splits:
  - name: train
    num_bytes: 62411
    num_examples: 100
  - name: validation
    num_bytes: 183717
    num_examples: 350
  - name: test
    num_bytes: 217353
    num_examples: 431
  download_size: 508107
  dataset_size: 463481
- config_name: literature
  features:
  - name: doc_key
    dtype: string
  - name: sentence
    sequence: string
  - name: ner
    sequence:
    - name: id-start
      dtype: int32
    - name: id-end
      dtype: int32
    - name: entity-type
      dtype: string
  - name: relations
    sequence:
    - name: id_1-start
      dtype: int32
    - name: id_1-end
      dtype: int32
    - name: id_2-start
      dtype: int32
    - name: id_2-end
      dtype: int32
    - name: relation-type
      dtype: string
    - name: Exp
      dtype: string
    - name: Un
      dtype: bool
    - name: SA
      dtype: bool
  splits:
  - name: train
    num_bytes: 62699
    num_examples: 100
  - name: validation
    num_bytes: 246214
    num_examples: 400
  - name: test
    num_bytes: 264450
    num_examples: 416
  download_size: 635130
  dataset_size: 573363
- config_name: music
  features:
  - name: doc_key
    dtype: string
  - name: sentence
    sequence: string
  - name: ner
    sequence:
    - name: id-start
      dtype: int32
    - name: id-end
      dtype: int32
    - name: entity-type
      dtype: string
  - name: relations
    sequence:
    - name: id_1-start
      dtype: int32
    - name: id_1-end
      dtype: int32
    - name: id_2-start
      dtype: int32
    - name: id_2-end
      dtype: int32
    - name: relation-type
      dtype: string
    - name: Exp
      dtype: string
    - name: Un
      dtype: bool
    - name: SA
      dtype: bool
  splits:
  - name: train
    num_bytes: 69846
    num_examples: 100
  - name: validation
    num_bytes: 261497
    num_examples: 350
  - name: test
    num_bytes: 312165
    num_examples: 399
  download_size: 726956
  dataset_size: 643508
- config_name: news
  features:
  - name: doc_key
    dtype: string
  - name: sentence
    sequence: string
  - name: ner
    sequence:
    - name: id-start
      dtype: int32
    - name: id-end
      dtype: int32
    - name: entity-type
      dtype: string
  - name: relations
    sequence:
    - name: id_1-start
      dtype: int32
    - name: id_1-end
      dtype: int32
    - name: id_2-start
      dtype: int32
    - name: id_2-end
      dtype: int32
    - name: relation-type
      dtype: string
    - name: Exp
      dtype: string
    - name: Un
      dtype: bool
    - name: SA
      dtype: bool
  splits:
  - name: train
    num_bytes: 49102
    num_examples: 164
  - name: validation
    num_bytes: 77952
    num_examples: 350
  - name: test
    num_bytes: 96301
    num_examples: 400
  download_size: 239763
  dataset_size: 223355
- config_name: politics
  features:
  - name: doc_key
    dtype: string
  - name: sentence
    sequence: string
  - name: ner
    sequence:
    - name: id-start
      dtype: int32
    - name: id-end
      dtype: int32
    - name: entity-type
      dtype: string
  - name: relations
    sequence:
    - name: id_1-start
      dtype: int32
    - name: id_1-end
      dtype: int32
    - name: id_2-start
      dtype: int32
    - name: id_2-end
      dtype: int32
    - name: relation-type
      dtype: string
    - name: Exp
      dtype: string
    - name: Un
      dtype: bool
    - name: SA
      dtype: bool
  splits:
  - name: train
    num_bytes: 76004
    num_examples: 101
  - name: validation
    num_bytes: 277633
    num_examples: 350
  - name: test
    num_bytes: 295294
    num_examples: 400
  download_size: 726427
  dataset_size: 648931
- config_name: science
  features:
  - name: doc_key
    dtype: string
  - name: sentence
    sequence: string
  - name: ner
    sequence:
    - name: id-start
      dtype: int32
    - name: id-end
      dtype: int32
    - name: entity-type
      dtype: string
  - name: relations
    sequence:
    - name: id_1-start
      dtype: int32
    - name: id_1-end
      dtype: int32
    - name: id_2-start
      dtype: int32
    - name: id_2-end
      dtype: int32
    - name: relation-type
      dtype: string
    - name: Exp
      dtype: string
    - name: Un
      dtype: bool
    - name: SA
      dtype: bool
  splits:
  - name: train
    num_bytes: 63876
    num_examples: 103
  - name: validation
    num_bytes: 224402
    num_examples: 351
  - name: test
    num_bytes: 249075
    num_examples: 400
  download_size: 594058
  dataset_size: 537353
---
# Dataset Card for CrossRE
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description
- **Repository:** [CrossRE](https://github.com/mainlp/CrossRE)
- **Paper:** [CrossRE: A Cross-Domain Dataset for Relation Extraction](https://arxiv.org/abs/2210.09345)

### Dataset Summary
CrossRE is a new, freely-available crossdomain benchmark for RE, which comprises six distinct text domains and includes 
multilabel annotations. It includes the following domains: news, politics, natural science, music, literature and 
artificial intelligence. The semantic relations are annotated on top of CrossNER (Liu et al., 2021), a cross-domain
dataset for NER which contains domain-specific entity types.
The dataset contains 17 relation labels for the six domains: PART-OF, PHYSICAL, USAGE, ROLE, SOCIAL, 
GENERAL-AFFILIATION, COMPARE, TEMPORAL, ARTIFACT, ORIGIN, TOPIC, OPPOSITE, CAUSE-EFFECT, WIN-DEFEAT, TYPEOF, NAMED, and 
RELATED-TO.

For details, see the paper: https://arxiv.org/abs/2210.09345

### Supported Tasks and Leaderboards

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Languages

The language data in CrossRE is in English (BCP-47 en)

## Dataset Structure

### Data Instances

#### news
- **Size of downloaded dataset files:** 0.24 MB
- **Size of the generated dataset:** 0.22 MB

An example of 'train' looks as follows:
```python
{
  "doc_key": "news-train-1", 
  "sentence": ["EU", "rejects", "German", "call", "to", "boycott", "British", "lamb", "."], 
  "ner": [
    {"id-start": 0, "id-end": 0, "entity-type": "organisation"}, 
    {"id-start": 2, "id-end": 3, "entity-type": "misc"}, 
    {"id-start": 6, "id-end": 7, "entity-type": "misc"}
  ], 
  "relations": [
    {"id_1-start": 0, "id_1-end": 0, "id_2-start": 2, "id_2-end": 3, "relation-type": "opposite", "Exp": "rejects", "Un": False, "SA": False}, 
    {"id_1-start": 2, "id_1-end": 3, "id_2-start": 6, "id_2-end": 7, "relation-type": "opposite", "Exp": "calls_for_boycot_of", "Un": False, "SA": False}, 
    {"id_1-start": 2, "id_1-end": 3, "id_2-start": 6, "id_2-end": 7, "relation-type": "topic", "Exp": "", "Un": False, "SA": False}
  ]
}
```

#### politics
- **Size of downloaded dataset files:** 0.73 MB
- **Size of the generated dataset:** 0.65 MB

An example of 'train' looks as follows:
```python
{
  "doc_key": "politics-train-1", 
  "sentence": ["Parties", "with", "mainly", "Eurosceptic", "views", "are", "the", "ruling", "United", "Russia", ",", "and", "opposition", "parties", "the", "Communist", "Party", "of", "the", "Russian", "Federation", "and", "Liberal", "Democratic", "Party", "of", "Russia", "."], 
  "ner": [
    {"id-start": 8, "id-end": 9, "entity-type": "politicalparty"}, 
    {"id-start": 15, "id-end": 20, "entity-type": "politicalparty"}, 
    {"id-start": 22, "id-end": 26, "entity-type": "politicalparty"}
  ], 
  "relations": [
    {"id_1-start": 8, "id_1-end": 9, "id_2-start": 15, "id_2-end": 20, "relation-type": "opposite", "Exp": "in_opposition", "Un": False, "SA": False}, 
    {"id_1-start": 8, "id_1-end": 9, "id_2-start": 22, "id_2-end": 26, "relation-type": "opposite", "Exp": "in_opposition", "Un": False, "SA": False}
  ]
}
```

#### science
- **Size of downloaded dataset files:** 0.59 MB
- **Size of the generated dataset:** 0.54 MB

An example of 'train' looks as follows:
```python
{
  "doc_key": "science-train-1", 
  "sentence": ["They", "may", "also", "use", "Adenosine", "triphosphate", ",", "Nitric", "oxide", ",", "and", "ROS", "for", "signaling", "in", "the", "same", "ways", "that", "animals", "do", "."], 
  "ner": [
    {"id-start": 4, "id-end": 5, "entity-type": "chemicalcompound"}, 
    {"id-start": 7, "id-end": 8, "entity-type": "chemicalcompound"}, 
    {"id-start": 11, "id-end": 11, "entity-type": "chemicalcompound"}
  ], 
  "relations": []
}
```

#### music
- **Size of downloaded dataset files:** 0.73 MB
- **Size of the generated dataset:** 0.64 MB

An example of 'train' looks as follows:
```python
{
  "doc_key": "music-train-1", 
  "sentence": ["In", "2003", ",", "the", "Stade", "de", "France", "was", "the", "primary", "site", "of", "the", "2003", "World", "Championships", "in", "Athletics", "."], 
  "ner": [
    {"id-start": 4, "id-end": 6, "entity-type": "location"}, 
    {"id-start": 13, "id-end": 17, "entity-type": "event"}
  ], 
  "relations": [
    {"id_1-start": 13, "id_1-end": 17, "id_2-start": 4, "id_2-end": 6, "relation-type": "physical", "Exp": "", "Un": False, "SA": False}
  ]
}
```

#### literature
- **Size of downloaded dataset files:** 0.64 MB
- **Size of the generated dataset:** 0.57 MB

An example of 'train' looks as follows:
```python
{
  "doc_key": "literature-train-1", 
  "sentence": ["In", "1351", ",", "during", "the", "reign", "of", "Emperor", "Toghon", "Temür", "of", "the", "Yuan", "dynasty", ",", "93rd-generation", "descendant", "Kong", "Huan", "(", "孔浣", ")", "'", "s", "2nd", "son", "Kong", "Shao", "(", "孔昭", ")", "moved", "from", "China", "to", "Korea", "during", "the", "Goryeo", ",", "and", "was", "received", "courteously", "by", "Princess", "Noguk", "(", "the", "Mongolian-born", "wife", "of", "the", "future", "king", "Gongmin", ")", "."], 
  "ner": [
    {"id-start": 7, "id-end": 9, "entity-type": "person"}, 
    {"id-start": 12, "id-end": 13, "entity-type": "country"}, 
    {"id-start": 17, "id-end": 18, "entity-type": "writer"}, 
    {"id-start": 20, "id-end": 20, "entity-type": "writer"}, 
    {"id-start": 26, "id-end": 27, "entity-type": "writer"}, 
    {"id-start": 29, "id-end": 29, "entity-type": "writer"}, 
    {"id-start": 33, "id-end": 33, "entity-type": "country"}, 
    {"id-start": 35, "id-end": 35, "entity-type": "country"}, 
    {"id-start": 38, "id-end": 38, "entity-type": "misc"}, 
    {"id-start": 45, "id-end": 46, "entity-type": "person"}, 
    {"id-start": 49, "id-end": 50, "entity-type": "misc"}, 
    {"id-start": 55, "id-end": 55, "entity-type": "person"}
  ], 
  "relations": [
    {"id_1-start": 7, "id_1-end": 9, "id_2-start": 12, "id_2-end": 13, "relation-type": "role", "Exp": "", "Un": False, "SA": False}, 
    {"id_1-start": 7, "id_1-end": 9, "id_2-start": 12, "id_2-end": 13, "relation-type": "temporal", "Exp": "", "Un": False, "SA": False}, 
    {"id_1-start": 17, "id_1-end": 18, "id_2-start": 26, "id_2-end": 27, "relation-type": "social", "Exp": "family", "Un": False, "SA": False}, 
    {"id_1-start": 20, "id_1-end": 20, "id_2-start": 17, "id_2-end": 18, "relation-type": "named", "Exp": "", "Un": False, "SA": False}, 
    {"id_1-start": 26, "id_1-end": 27, "id_2-start": 33, "id_2-end": 33, "relation-type": "physical", "Exp": "", "Un": False, "SA": False}, 
    {"id_1-start": 26, "id_1-end": 27, "id_2-start": 35, "id_2-end": 35, "relation-type": "physical", "Exp": "", "Un": False, "SA": False}, 
    {"id_1-start": 26, "id_1-end": 27, "id_2-start": 38, "id_2-end": 38, "relation-type": "temporal", "Exp": "", "Un": False, "SA": False}, 
    {"id_1-start": 26, "id_1-end": 27, "id_2-start": 45, "id_2-end": 46, "relation-type": "social", "Exp": "greeted_by", "Un": False, "SA": False}, 
    {"id_1-start": 29, "id_1-end": 29, "id_2-start": 26, "id_2-end": 27, "relation-type": "named", "Exp": "", "Un": False, "SA": False}, 
    {"id_1-start": 45, "id_1-end": 46, "id_2-start": 55, "id_2-end": 55, "relation-type": "social", "Exp": "marriage", "Un": False, "SA": False}, 
    {"id_1-start": 49, "id_1-end": 50, "id_2-start": 45, "id_2-end": 46, "relation-type": "named", "Exp": "", "Un": False, "SA": False}
  ]
}
```

#### ai
- **Size of downloaded dataset files:** 0.51 MB
- **Size of the generated dataset:** 0.46 MB

An example of 'train' looks as follows:
```python
{
  "doc_key": "ai-train-1", 
  "sentence": ["Popular", "approaches", "of", "opinion-based", "recommender", "system", "utilize", "various", "techniques", "including", "text", "mining", ",", "information", "retrieval", ",", "sentiment", "analysis", "(", "see", "also", "Multimodal", "sentiment", "analysis", ")", "and", "deep", "learning", "X.Y.", "Feng", ",", "H.", "Zhang", ",", "Y.J.", "Ren", ",", "P.H.", "Shang", ",", "Y.", "Zhu", ",", "Y.C.", "Liang", ",", "R.C.", "Guan", ",", "D.", "Xu", ",", "(", "2019", ")", ",", ",", "21", "(", "5", ")", ":", "e12957", "."], 
  "ner": [
    {"id-start": 3, "id-end": 5, "entity-type": "product"}, 
    {"id-start": 10, "id-end": 11, "entity-type": "field"}, 
    {"id-start": 13, "id-end": 14, "entity-type": "task"}, 
    {"id-start": 16, "id-end": 17, "entity-type": "task"}, 
    {"id-start": 21, "id-end": 23, "entity-type": "task"}, 
    {"id-start": 26, "id-end": 27, "entity-type": "field"}, 
    {"id-start": 28, "id-end": 29, "entity-type": "researcher"}, 
    {"id-start": 31, "id-end": 32, "entity-type": "researcher"}, 
    {"id-start": 34, "id-end": 35, "entity-type": "researcher"}, 
    {"id-start": 37, "id-end": 38, "entity-type": "researcher"}, 
    {"id-start": 40, "id-end": 41, "entity-type": "researcher"}, 
    {"id-start": 43, "id-end": 44, "entity-type": "researcher"}, 
    {"id-start": 46, "id-end": 47, "entity-type": "researcher"}, 
    {"id-start": 49, "id-end": 50, "entity-type": "researcher"}
  ], 
  "relations": [
    {"id_1-start": 3, "id_1-end": 5, "id_2-start": 10, "id_2-end": 11, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False}, 
    {"id_1-start": 3, "id_1-end": 5, "id_2-start": 10, "id_2-end": 11, "relation-type": "usage", "Exp": "", "Un": False, "SA": False}, 
    {"id_1-start": 3, "id_1-end": 5, "id_2-start": 13, "id_2-end": 14, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False}, 
    {"id_1-start": 3, "id_1-end": 5, "id_2-start": 13, "id_2-end": 14, "relation-type": "usage", "Exp": "", "Un": False, "SA": False}, 
    {"id_1-start": 3, "id_1-end": 5, "id_2-start": 16, "id_2-end": 17, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False}, 
    {"id_1-start": 3, "id_1-end": 5, "id_2-start": 16, "id_2-end": 17, "relation-type": "usage", "Exp": "", "Un": False, "SA": False}, 
    {"id_1-start": 3, "id_1-end": 5, "id_2-start": 26, "id_2-end": 27, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False}, 
    {"id_1-start": 3, "id_1-end": 5, "id_2-start": 26, "id_2-end": 27, "relation-type": "usage", "Exp": "", "Un": False, "SA": False}, 
    {"id_1-start": 21, "id_1-end": 23, "id_2-start": 16, "id_2-end": 17, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False}, 
    {"id_1-start": 21, "id_1-end": 23, "id_2-start": 16, "id_2-end": 17, "relation-type": "type-of", "Exp": "", "Un": False, "SA": False}
  ]
}
```

### Data Fields

The data fields are the same among all splits.
- `doc_key`: the instance id of this sentence, a `string` feature.
- `sentence`: the list of tokens of this sentence, obtained with spaCy, a `list` of `string` features.
- `ner`: the list of named entities in this sentence, a `list` of `dict` features.
  - `id-start`: the start index of the entity, a `int` feature.
  - `id-end`: the end index of the entity, a `int` feature.
  - `entity-type`: the type of the entity, a `string` feature.
- `relations`: the list of relations in this sentence, a `list` of `dict` features.
  - `id_1-start`: the start index of the first entity, a `int` feature.
  - `id_1-end`: the end index of the first entity, a `int` feature.
  - `id_2-start`: the start index of the second entity, a `int` feature.
  - `id_2-end`: the end index of the second entity, a `int` feature.
  - `relation-type`: the type of the relation, a `string` feature.
  - `Exp`: the explanation of the relation type assigned, a `string` feature.
  - `Un`: uncertainty of the annotator, a `bool` feature.
  - `SA`: existence of syntax ambiguity which poses a challenge for the annotator, a `bool` feature.

### Data Splits
#### Sentences
|              | Train   | Dev     | Test    | Total   |
|--------------|---------|---------|---------|---------|
| news         | 164     | 350     | 400     | 914     |
| politics     | 101     | 350     | 400     | 851     |
| science      | 103     | 351     | 400     | 854     |
| music        | 100     | 350     | 399     | 849     |
| literature   | 100     | 400     | 416     | 916     |
| ai           | 100     | 350     | 431     | 881     |
| ------------ | ------- | ------- | ------- | ------- |
| total        | 668     | 2,151   | 2,46    | 5,265   |

#### Relations
|              | Train   | Dev     | Test    | Total   |
|--------------|---------|---------|---------|---------|
| news         | 175     | 300     | 396     | 871     |
| politics     | 502     | 1,616   | 1,831   | 3,949   |
| science      | 355     | 1,340   | 1,393   | 3,088   |
| music        | 496     | 1,861   | 2,333   | 4,690   |
| literature   | 397     | 1,539   | 1,591   | 3,527   |
| ai           | 350     | 1,006   | 1,127   | 2,483   |
| ------------ | ------- | ------- | ------- | ------- |
| total        | 2,275   | 7,662   | 8,671   | 18,608  |

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Citation Information

```
@inproceedings{bassignana-plank-2022-crossre,
    title = "Cross{RE}: A {C}ross-{D}omain {D}ataset for {R}elation {E}xtraction",
    author = "Bassignana, Elisa and Plank, Barbara",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
    year = "2022",
    publisher = "Association for Computational Linguistics"
}
```

### Contributions

Thanks to [@phucdev](https://github.com/phucdev) for adding this dataset.