Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
multi-class-classification
Languages:
English
Size:
1K - 10K
ArXiv:
File size: 21,965 Bytes
eb58348 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
---
annotations_creators:
- expert-generated
language:
- en
language_creators:
- found
license: []
multilinguality:
- monolingual
pretty_name: CrossRE is a cross-domain dataset for relation extraction
size_categories:
- 10K<n<100K
source_datasets:
- extended|cross_ner
tags:
- cross domain
- ai
- news
- music
- literature
- politics
- science
task_categories:
- text-classification
task_ids:
- multi-class-classification
dataset_info:
- config_name: ai
features:
- name: doc_key
dtype: string
- name: sentence
sequence: string
- name: ner
sequence:
- name: id-start
dtype: int32
- name: id-end
dtype: int32
- name: entity-type
dtype: string
- name: relations
sequence:
- name: id_1-start
dtype: int32
- name: id_1-end
dtype: int32
- name: id_2-start
dtype: int32
- name: id_2-end
dtype: int32
- name: relation-type
dtype: string
- name: Exp
dtype: string
- name: Un
dtype: bool
- name: SA
dtype: bool
splits:
- name: train
num_bytes: 62411
num_examples: 100
- name: validation
num_bytes: 183717
num_examples: 350
- name: test
num_bytes: 217353
num_examples: 431
download_size: 508107
dataset_size: 463481
- config_name: literature
features:
- name: doc_key
dtype: string
- name: sentence
sequence: string
- name: ner
sequence:
- name: id-start
dtype: int32
- name: id-end
dtype: int32
- name: entity-type
dtype: string
- name: relations
sequence:
- name: id_1-start
dtype: int32
- name: id_1-end
dtype: int32
- name: id_2-start
dtype: int32
- name: id_2-end
dtype: int32
- name: relation-type
dtype: string
- name: Exp
dtype: string
- name: Un
dtype: bool
- name: SA
dtype: bool
splits:
- name: train
num_bytes: 62699
num_examples: 100
- name: validation
num_bytes: 246214
num_examples: 400
- name: test
num_bytes: 264450
num_examples: 416
download_size: 635130
dataset_size: 573363
- config_name: music
features:
- name: doc_key
dtype: string
- name: sentence
sequence: string
- name: ner
sequence:
- name: id-start
dtype: int32
- name: id-end
dtype: int32
- name: entity-type
dtype: string
- name: relations
sequence:
- name: id_1-start
dtype: int32
- name: id_1-end
dtype: int32
- name: id_2-start
dtype: int32
- name: id_2-end
dtype: int32
- name: relation-type
dtype: string
- name: Exp
dtype: string
- name: Un
dtype: bool
- name: SA
dtype: bool
splits:
- name: train
num_bytes: 69846
num_examples: 100
- name: validation
num_bytes: 261497
num_examples: 350
- name: test
num_bytes: 312165
num_examples: 399
download_size: 726956
dataset_size: 643508
- config_name: news
features:
- name: doc_key
dtype: string
- name: sentence
sequence: string
- name: ner
sequence:
- name: id-start
dtype: int32
- name: id-end
dtype: int32
- name: entity-type
dtype: string
- name: relations
sequence:
- name: id_1-start
dtype: int32
- name: id_1-end
dtype: int32
- name: id_2-start
dtype: int32
- name: id_2-end
dtype: int32
- name: relation-type
dtype: string
- name: Exp
dtype: string
- name: Un
dtype: bool
- name: SA
dtype: bool
splits:
- name: train
num_bytes: 49102
num_examples: 164
- name: validation
num_bytes: 77952
num_examples: 350
- name: test
num_bytes: 96301
num_examples: 400
download_size: 239763
dataset_size: 223355
- config_name: politics
features:
- name: doc_key
dtype: string
- name: sentence
sequence: string
- name: ner
sequence:
- name: id-start
dtype: int32
- name: id-end
dtype: int32
- name: entity-type
dtype: string
- name: relations
sequence:
- name: id_1-start
dtype: int32
- name: id_1-end
dtype: int32
- name: id_2-start
dtype: int32
- name: id_2-end
dtype: int32
- name: relation-type
dtype: string
- name: Exp
dtype: string
- name: Un
dtype: bool
- name: SA
dtype: bool
splits:
- name: train
num_bytes: 76004
num_examples: 101
- name: validation
num_bytes: 277633
num_examples: 350
- name: test
num_bytes: 295294
num_examples: 400
download_size: 726427
dataset_size: 648931
- config_name: science
features:
- name: doc_key
dtype: string
- name: sentence
sequence: string
- name: ner
sequence:
- name: id-start
dtype: int32
- name: id-end
dtype: int32
- name: entity-type
dtype: string
- name: relations
sequence:
- name: id_1-start
dtype: int32
- name: id_1-end
dtype: int32
- name: id_2-start
dtype: int32
- name: id_2-end
dtype: int32
- name: relation-type
dtype: string
- name: Exp
dtype: string
- name: Un
dtype: bool
- name: SA
dtype: bool
splits:
- name: train
num_bytes: 63876
num_examples: 103
- name: validation
num_bytes: 224402
num_examples: 351
- name: test
num_bytes: 249075
num_examples: 400
download_size: 594058
dataset_size: 537353
---
# Dataset Card for CrossRE
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [CrossRE](https://github.com/mainlp/CrossRE)
- **Paper:** [CrossRE: A Cross-Domain Dataset for Relation Extraction](https://arxiv.org/abs/2210.09345)
### Dataset Summary
CrossRE is a new, freely-available crossdomain benchmark for RE, which comprises six distinct text domains and includes
multilabel annotations. It includes the following domains: news, politics, natural science, music, literature and
artificial intelligence. The semantic relations are annotated on top of CrossNER (Liu et al., 2021), a cross-domain
dataset for NER which contains domain-specific entity types.
The dataset contains 17 relation labels for the six domains: PART-OF, PHYSICAL, USAGE, ROLE, SOCIAL,
GENERAL-AFFILIATION, COMPARE, TEMPORAL, ARTIFACT, ORIGIN, TOPIC, OPPOSITE, CAUSE-EFFECT, WIN-DEFEAT, TYPEOF, NAMED, and
RELATED-TO.
For details, see the paper: https://arxiv.org/abs/2210.09345
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
The language data in CrossRE is in English (BCP-47 en)
## Dataset Structure
### Data Instances
#### news
- **Size of downloaded dataset files:** 0.24 MB
- **Size of the generated dataset:** 0.22 MB
An example of 'train' looks as follows:
```python
{
"doc_key": "news-train-1",
"sentence": ["EU", "rejects", "German", "call", "to", "boycott", "British", "lamb", "."],
"ner": [
{"id-start": 0, "id-end": 0, "entity-type": "organisation"},
{"id-start": 2, "id-end": 3, "entity-type": "misc"},
{"id-start": 6, "id-end": 7, "entity-type": "misc"}
],
"relations": [
{"id_1-start": 0, "id_1-end": 0, "id_2-start": 2, "id_2-end": 3, "relation-type": "opposite", "Exp": "rejects", "Un": False, "SA": False},
{"id_1-start": 2, "id_1-end": 3, "id_2-start": 6, "id_2-end": 7, "relation-type": "opposite", "Exp": "calls_for_boycot_of", "Un": False, "SA": False},
{"id_1-start": 2, "id_1-end": 3, "id_2-start": 6, "id_2-end": 7, "relation-type": "topic", "Exp": "", "Un": False, "SA": False}
]
}
```
#### politics
- **Size of downloaded dataset files:** 0.73 MB
- **Size of the generated dataset:** 0.65 MB
An example of 'train' looks as follows:
```python
{
"doc_key": "politics-train-1",
"sentence": ["Parties", "with", "mainly", "Eurosceptic", "views", "are", "the", "ruling", "United", "Russia", ",", "and", "opposition", "parties", "the", "Communist", "Party", "of", "the", "Russian", "Federation", "and", "Liberal", "Democratic", "Party", "of", "Russia", "."],
"ner": [
{"id-start": 8, "id-end": 9, "entity-type": "politicalparty"},
{"id-start": 15, "id-end": 20, "entity-type": "politicalparty"},
{"id-start": 22, "id-end": 26, "entity-type": "politicalparty"}
],
"relations": [
{"id_1-start": 8, "id_1-end": 9, "id_2-start": 15, "id_2-end": 20, "relation-type": "opposite", "Exp": "in_opposition", "Un": False, "SA": False},
{"id_1-start": 8, "id_1-end": 9, "id_2-start": 22, "id_2-end": 26, "relation-type": "opposite", "Exp": "in_opposition", "Un": False, "SA": False}
]
}
```
#### science
- **Size of downloaded dataset files:** 0.59 MB
- **Size of the generated dataset:** 0.54 MB
An example of 'train' looks as follows:
```python
{
"doc_key": "science-train-1",
"sentence": ["They", "may", "also", "use", "Adenosine", "triphosphate", ",", "Nitric", "oxide", ",", "and", "ROS", "for", "signaling", "in", "the", "same", "ways", "that", "animals", "do", "."],
"ner": [
{"id-start": 4, "id-end": 5, "entity-type": "chemicalcompound"},
{"id-start": 7, "id-end": 8, "entity-type": "chemicalcompound"},
{"id-start": 11, "id-end": 11, "entity-type": "chemicalcompound"}
],
"relations": []
}
```
#### music
- **Size of downloaded dataset files:** 0.73 MB
- **Size of the generated dataset:** 0.64 MB
An example of 'train' looks as follows:
```python
{
"doc_key": "music-train-1",
"sentence": ["In", "2003", ",", "the", "Stade", "de", "France", "was", "the", "primary", "site", "of", "the", "2003", "World", "Championships", "in", "Athletics", "."],
"ner": [
{"id-start": 4, "id-end": 6, "entity-type": "location"},
{"id-start": 13, "id-end": 17, "entity-type": "event"}
],
"relations": [
{"id_1-start": 13, "id_1-end": 17, "id_2-start": 4, "id_2-end": 6, "relation-type": "physical", "Exp": "", "Un": False, "SA": False}
]
}
```
#### literature
- **Size of downloaded dataset files:** 0.64 MB
- **Size of the generated dataset:** 0.57 MB
An example of 'train' looks as follows:
```python
{
"doc_key": "literature-train-1",
"sentence": ["In", "1351", ",", "during", "the", "reign", "of", "Emperor", "Toghon", "Temür", "of", "the", "Yuan", "dynasty", ",", "93rd-generation", "descendant", "Kong", "Huan", "(", "孔浣", ")", "'", "s", "2nd", "son", "Kong", "Shao", "(", "孔昭", ")", "moved", "from", "China", "to", "Korea", "during", "the", "Goryeo", ",", "and", "was", "received", "courteously", "by", "Princess", "Noguk", "(", "the", "Mongolian-born", "wife", "of", "the", "future", "king", "Gongmin", ")", "."],
"ner": [
{"id-start": 7, "id-end": 9, "entity-type": "person"},
{"id-start": 12, "id-end": 13, "entity-type": "country"},
{"id-start": 17, "id-end": 18, "entity-type": "writer"},
{"id-start": 20, "id-end": 20, "entity-type": "writer"},
{"id-start": 26, "id-end": 27, "entity-type": "writer"},
{"id-start": 29, "id-end": 29, "entity-type": "writer"},
{"id-start": 33, "id-end": 33, "entity-type": "country"},
{"id-start": 35, "id-end": 35, "entity-type": "country"},
{"id-start": 38, "id-end": 38, "entity-type": "misc"},
{"id-start": 45, "id-end": 46, "entity-type": "person"},
{"id-start": 49, "id-end": 50, "entity-type": "misc"},
{"id-start": 55, "id-end": 55, "entity-type": "person"}
],
"relations": [
{"id_1-start": 7, "id_1-end": 9, "id_2-start": 12, "id_2-end": 13, "relation-type": "role", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 7, "id_1-end": 9, "id_2-start": 12, "id_2-end": 13, "relation-type": "temporal", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 17, "id_1-end": 18, "id_2-start": 26, "id_2-end": 27, "relation-type": "social", "Exp": "family", "Un": False, "SA": False},
{"id_1-start": 20, "id_1-end": 20, "id_2-start": 17, "id_2-end": 18, "relation-type": "named", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 26, "id_1-end": 27, "id_2-start": 33, "id_2-end": 33, "relation-type": "physical", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 26, "id_1-end": 27, "id_2-start": 35, "id_2-end": 35, "relation-type": "physical", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 26, "id_1-end": 27, "id_2-start": 38, "id_2-end": 38, "relation-type": "temporal", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 26, "id_1-end": 27, "id_2-start": 45, "id_2-end": 46, "relation-type": "social", "Exp": "greeted_by", "Un": False, "SA": False},
{"id_1-start": 29, "id_1-end": 29, "id_2-start": 26, "id_2-end": 27, "relation-type": "named", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 45, "id_1-end": 46, "id_2-start": 55, "id_2-end": 55, "relation-type": "social", "Exp": "marriage", "Un": False, "SA": False},
{"id_1-start": 49, "id_1-end": 50, "id_2-start": 45, "id_2-end": 46, "relation-type": "named", "Exp": "", "Un": False, "SA": False}
]
}
```
#### ai
- **Size of downloaded dataset files:** 0.51 MB
- **Size of the generated dataset:** 0.46 MB
An example of 'train' looks as follows:
```python
{
"doc_key": "ai-train-1",
"sentence": ["Popular", "approaches", "of", "opinion-based", "recommender", "system", "utilize", "various", "techniques", "including", "text", "mining", ",", "information", "retrieval", ",", "sentiment", "analysis", "(", "see", "also", "Multimodal", "sentiment", "analysis", ")", "and", "deep", "learning", "X.Y.", "Feng", ",", "H.", "Zhang", ",", "Y.J.", "Ren", ",", "P.H.", "Shang", ",", "Y.", "Zhu", ",", "Y.C.", "Liang", ",", "R.C.", "Guan", ",", "D.", "Xu", ",", "(", "2019", ")", ",", ",", "21", "(", "5", ")", ":", "e12957", "."],
"ner": [
{"id-start": 3, "id-end": 5, "entity-type": "product"},
{"id-start": 10, "id-end": 11, "entity-type": "field"},
{"id-start": 13, "id-end": 14, "entity-type": "task"},
{"id-start": 16, "id-end": 17, "entity-type": "task"},
{"id-start": 21, "id-end": 23, "entity-type": "task"},
{"id-start": 26, "id-end": 27, "entity-type": "field"},
{"id-start": 28, "id-end": 29, "entity-type": "researcher"},
{"id-start": 31, "id-end": 32, "entity-type": "researcher"},
{"id-start": 34, "id-end": 35, "entity-type": "researcher"},
{"id-start": 37, "id-end": 38, "entity-type": "researcher"},
{"id-start": 40, "id-end": 41, "entity-type": "researcher"},
{"id-start": 43, "id-end": 44, "entity-type": "researcher"},
{"id-start": 46, "id-end": 47, "entity-type": "researcher"},
{"id-start": 49, "id-end": 50, "entity-type": "researcher"}
],
"relations": [
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 10, "id_2-end": 11, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 10, "id_2-end": 11, "relation-type": "usage", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 13, "id_2-end": 14, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 13, "id_2-end": 14, "relation-type": "usage", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 16, "id_2-end": 17, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 16, "id_2-end": 17, "relation-type": "usage", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 26, "id_2-end": 27, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 3, "id_1-end": 5, "id_2-start": 26, "id_2-end": 27, "relation-type": "usage", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 21, "id_1-end": 23, "id_2-start": 16, "id_2-end": 17, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False},
{"id_1-start": 21, "id_1-end": 23, "id_2-start": 16, "id_2-end": 17, "relation-type": "type-of", "Exp": "", "Un": False, "SA": False}
]
}
```
### Data Fields
The data fields are the same among all splits.
- `doc_key`: the instance id of this sentence, a `string` feature.
- `sentence`: the list of tokens of this sentence, obtained with spaCy, a `list` of `string` features.
- `ner`: the list of named entities in this sentence, a `list` of `dict` features.
- `id-start`: the start index of the entity, a `int` feature.
- `id-end`: the end index of the entity, a `int` feature.
- `entity-type`: the type of the entity, a `string` feature.
- `relations`: the list of relations in this sentence, a `list` of `dict` features.
- `id_1-start`: the start index of the first entity, a `int` feature.
- `id_1-end`: the end index of the first entity, a `int` feature.
- `id_2-start`: the start index of the second entity, a `int` feature.
- `id_2-end`: the end index of the second entity, a `int` feature.
- `relation-type`: the type of the relation, a `string` feature.
- `Exp`: the explanation of the relation type assigned, a `string` feature.
- `Un`: uncertainty of the annotator, a `bool` feature.
- `SA`: existence of syntax ambiguity which poses a challenge for the annotator, a `bool` feature.
### Data Splits
#### Sentences
| | Train | Dev | Test | Total |
|--------------|---------|---------|---------|---------|
| news | 164 | 350 | 400 | 914 |
| politics | 101 | 350 | 400 | 851 |
| science | 103 | 351 | 400 | 854 |
| music | 100 | 350 | 399 | 849 |
| literature | 100 | 400 | 416 | 916 |
| ai | 100 | 350 | 431 | 881 |
| ------------ | ------- | ------- | ------- | ------- |
| total | 668 | 2,151 | 2,46 | 5,265 |
#### Relations
| | Train | Dev | Test | Total |
|--------------|---------|---------|---------|---------|
| news | 175 | 300 | 396 | 871 |
| politics | 502 | 1,616 | 1,831 | 3,949 |
| science | 355 | 1,340 | 1,393 | 3,088 |
| music | 496 | 1,861 | 2,333 | 4,690 |
| literature | 397 | 1,539 | 1,591 | 3,527 |
| ai | 350 | 1,006 | 1,127 | 2,483 |
| ------------ | ------- | ------- | ------- | ------- |
| total | 2,275 | 7,662 | 8,671 | 18,608 |
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@inproceedings{bassignana-plank-2022-crossre,
title = "Cross{RE}: A {C}ross-{D}omain {D}ataset for {R}elation {E}xtraction",
author = "Bassignana, Elisa and Plank, Barbara",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
year = "2022",
publisher = "Association for Computational Linguistics"
}
```
### Contributions
Thanks to [@phucdev](https://github.com/phucdev) for adding this dataset. |