|
from zipfile import ZipFile, ZIP_DEFLATED |
|
import json |
|
import os |
|
import copy |
|
import zipfile |
|
from tqdm import tqdm |
|
import re |
|
from collections import Counter |
|
from shutil import rmtree |
|
from convlab.util.file_util import read_zipped_json, write_zipped_json |
|
from pprint import pprint |
|
import random |
|
|
|
|
|
descriptions = { |
|
"flights": { |
|
"flights": "find a round trip or multi-city flights", |
|
"type": "type of the flight", |
|
"destination1": "the first destination city of the trip", |
|
"destination2": "the second destination city of the trip", |
|
"origin": "the origin city of the trip", |
|
"date.depart_origin": "date of departure from origin", |
|
"date.depart_intermediate": "date of departure from intermediate", |
|
"date.return": "date of return", |
|
"time_of_day": "time of the flight", |
|
"seating_class": "seat type (first class, business class, economy class, etc.", |
|
"seat_location": "location of the seat", |
|
"stops": "non-stop, layovers, etc.", |
|
"price_range": "price range of the flight", |
|
"num.pax": "number of people", |
|
"luggage": "luggage information", |
|
"total_fare": "total cost of the trip", |
|
"other_description": "other description of the flight", |
|
"from": "departure of the flight", |
|
"to": "destination of the flight", |
|
"airline": "airline of the flight", |
|
"flight_number": "the number of the flight", |
|
"date": "date of the flight", |
|
"from.time": "departure time of the flight", |
|
"to.time": "arrival time of the flight", |
|
"stops.location": "location of the stop", |
|
"fare": "cost of the flight", |
|
}, |
|
"food-ordering": { |
|
"food-ordering": "order take-out for a particular cuisine choice", |
|
"name.item": "name of the item", |
|
"other_description.item": "other description of the item", |
|
"type.retrieval": "type of the retrieval method", |
|
"total_price": "total price", |
|
"time.pickup": "pick up time", |
|
"num.people": "number of people", |
|
"name.restaurant": "name of the restaurant", |
|
"type.food": "type of food", |
|
"type.meal": "type of meal", |
|
"location.restaurant": "location of the restaurant", |
|
"rating.restaurant": "rating of the restaurant", |
|
"price_range": "price range of the food", |
|
}, |
|
"hotels": { |
|
"hotels": "find a hotel using typical preferences", |
|
"name.hotel": "name of the hotel", |
|
"location.hotel": "location of the hotel", |
|
"sub_location.hotel": "rough location of the hotel", |
|
"star_rating": "star rating of the hotel", |
|
"customer_rating": "customer rating of the hotel", |
|
"customer_review": "customer review of the hotel", |
|
"price_range": "price range of the hotel", |
|
"amenity": "amenity of the hotel", |
|
"num.beds": "number of beds to book", |
|
"type.bed": "type of the bed", |
|
"num.rooms": "number of rooms to book", |
|
"check-in_date": "check-in date", |
|
"check-out_date": "check-out date", |
|
"date_range": "date range of the reservation", |
|
"num.guests": "number of guests", |
|
"type.room": "type of the room", |
|
"price_per_night": "price per night", |
|
"total_fare": "total fare", |
|
"location": "location of the hotel", |
|
"other_request": "other request", |
|
"other_detail": "other detail", |
|
}, |
|
"movies": { |
|
"movies": "find a movie to watch in theaters or using a streaming service at home", |
|
"name.movie": "name of the movie", |
|
"genre": "genre of the movie", |
|
"name.theater": "name of the theater", |
|
"location.theater": "location of the theater", |
|
"time.start": "start time of the movie", |
|
"time.end": "end time of the movie", |
|
"price.ticket": "price of the ticket", |
|
"price.streaming": "price of the streaming", |
|
"type.screening": "type of the screening", |
|
"audience_rating": "audience rating", |
|
"critic_rating": "critic rating", |
|
"movie_rating": "film rating", |
|
"release_date": "release date of the movie", |
|
"runtime": "running time of the movie", |
|
"real_person": "name of actors, directors, etc.", |
|
"character": "name of character in the movie", |
|
"streaming_service": "streaming service that provide the movie", |
|
"num.tickets": "number of tickets", |
|
"seating": "type of seating", |
|
"other_description": "other description about the movie", |
|
"synopsis": "synopsis of the movie", |
|
}, |
|
"music": { |
|
"music": "find several tracks to play and then comment on each one", |
|
"name.track": "name of the track", |
|
"name.artist": "name of the artist", |
|
"name.album": "name of the album", |
|
"name.genre": "music genre", |
|
"type.music": "rough type of the music", |
|
"describes_track": "description of a track to find", |
|
"describes_artist": "description of a artist to find", |
|
"describes_album": "description of an album to find", |
|
"describes_genre": "description of a genre to find", |
|
"describes_type.music": "description of the music type", |
|
"technical_difficulty": "there is a technical difficulty", |
|
}, |
|
"restaurant-search": { |
|
"restaurant-search": "ask for recommendations for a particular type of cuisine", |
|
"name.restaurant": "name of the restaurant", |
|
"location": "location of the restaurant", |
|
"sub-location": "rough location of the restaurant", |
|
"type.food": "the cuisine of the restaurant", |
|
"menu_item": "item in the menu", |
|
"type.meal": "type of meal", |
|
"rating": "rating of the restaurant", |
|
"price_range": "price range of the restaurant", |
|
"business_hours": "business hours of the restaurant", |
|
"name.reservation": "name of the person who make the reservation", |
|
"num.guests": "number of guests", |
|
"time.reservation": "time of the reservation", |
|
"date.reservation": "date of the reservation", |
|
"type.seating": "type of the seating", |
|
"other_description": "other description of the restaurant", |
|
"phone": "phone number of the restaurant", |
|
}, |
|
"sports": { |
|
"sports": "discuss facts and stats about players, teams, games, etc. in EPL, MLB, MLS, NBA, NFL", |
|
"name.team": "name of the team", |
|
"record.team": "record of the team (number of wins and losses)", |
|
"record.games_ahead": "number of games ahead", |
|
"record.games_back": "number of games behind", |
|
"place.team": "ranking of the team", |
|
"result.match": "result of the match", |
|
"score.match": "score of the match", |
|
"date.match": "date of the match", |
|
"day.match": "day of the match", |
|
"time.match": "time of the match", |
|
"name.player": "name of the player", |
|
"position.player": "position of the player", |
|
"record.player": "record of the player", |
|
"name.non_player": "name of non-palyer such as the manager, coach", |
|
"venue": "venue of the match take place", |
|
"other_description.person": "other description of the person", |
|
"other_description.team": "other description of the team", |
|
"other_description.match": "other description of the match", |
|
} |
|
} |
|
|
|
anno2slot = { |
|
"flights": { |
|
"date.depart": "date.depart_origin", |
|
"date.intermediate": "date.depart_intermediate", |
|
"flight_booked": False, |
|
}, |
|
"food-ordering": { |
|
"name.person": None, |
|
"phone.restaurant": None, |
|
"business_hours.restaurant": None, |
|
"official_description.restaurant": None, |
|
}, |
|
"hotels": { |
|
"hotel_booked": False, |
|
}, |
|
"movies": { |
|
"time.end.": "time.end", |
|
"seating ticket_booking": "seating", |
|
"ticket_booking": False, |
|
"synopsis": False, |
|
}, |
|
"music": {}, |
|
"restaurant-search": { |
|
"offical_description": False, |
|
}, |
|
"sports": {} |
|
} |
|
|
|
|
|
def format_turns(ori_turns): |
|
|
|
new_turns = [] |
|
previous_speaker = None |
|
utt_idx = 0 |
|
for i, turn in enumerate(ori_turns): |
|
speaker = 'system' if turn['speaker'] == 'ASSISTANT' else 'user' |
|
turn['speaker'] = speaker |
|
if turn['text'] == '(deleted)': |
|
continue |
|
if not previous_speaker: |
|
|
|
assert speaker != previous_speaker |
|
if speaker != previous_speaker: |
|
|
|
previous_speaker = speaker |
|
new_turns.append(copy.deepcopy(turn)) |
|
utt_idx += 1 |
|
else: |
|
|
|
last_turn = new_turns[-1] |
|
|
|
if turn['text'] in ori_turns[i-1]['text']: |
|
continue |
|
|
|
index_shift = len(last_turn['text']) + 1 |
|
last_turn['text'] += ' '+turn['text'] |
|
if 'segments' in turn: |
|
last_turn.setdefault('segments', []) |
|
for segment in turn['segments']: |
|
segment['start_index'] += index_shift |
|
segment['end_index'] += index_shift |
|
last_turn['segments'] += turn['segments'] |
|
return new_turns |
|
|
|
|
|
def preprocess(): |
|
original_data_dir = 'Taskmaster-master' |
|
new_data_dir = 'data' |
|
|
|
if not os.path.exists(original_data_dir): |
|
original_data_zip = 'master.zip' |
|
if not os.path.exists(original_data_zip): |
|
raise FileNotFoundError(f'cannot find original data {original_data_zip} in tm2/, should manually download master.zip from https://github.com/google-research-datasets/Taskmaster/archive/refs/heads/master.zip') |
|
else: |
|
archive = ZipFile(original_data_zip) |
|
archive.extractall() |
|
|
|
os.makedirs(new_data_dir, exist_ok=True) |
|
|
|
ontology = {'domains': {}, |
|
'intents': { |
|
'inform': {'description': 'inform the value of a slot or general information.'} |
|
}, |
|
'state': {}, |
|
'dialogue_acts': { |
|
"categorical": {}, |
|
"non-categorical": {}, |
|
"binary": {} |
|
}} |
|
global descriptions |
|
global anno2slot |
|
domains = ['flights', 'food-ordering', 'hotels', 'movies', 'music', 'restaurant-search', 'sports'] |
|
for domain in domains: |
|
domain_ontology = json.load(open(os.path.join(original_data_dir, f"TM-2-2020/ontology/{domain}.json"))) |
|
assert len(domain_ontology) == 1 |
|
ontology['domains'][domain] = {'description': descriptions[domain][domain], 'slots': {}} |
|
ontology['state'][domain] = {} |
|
for item in list(domain_ontology.values())[0]: |
|
for anno in item['annotations']: |
|
slot = anno.strip() |
|
if slot in anno2slot[domain]: |
|
if anno2slot[domain][slot] in [None, False]: |
|
continue |
|
else: |
|
slot = anno2slot[domain][slot] |
|
ontology['domains'][domain]['slots'][slot] = { |
|
'description': descriptions[domain][slot], |
|
'is_categorical': False, |
|
'possible_values': [], |
|
} |
|
ontology['state'][domain][slot] = '' |
|
|
|
for domain, slot in [('movies', 'price.streaming'), ('restaurant-search', 'phone')]: |
|
ontology['domains'][domain]['slots'][slot] = { |
|
'description': descriptions[domain][slot], |
|
'is_categorical': False, |
|
'possible_values': [], |
|
} |
|
ontology['state'][domain][slot] = '' |
|
|
|
dataset = 'tm2' |
|
splits = ['train', 'validation', 'test'] |
|
dialogues_by_split = {split:[] for split in splits} |
|
for domain in domains: |
|
data = json.load(open(os.path.join(original_data_dir, f"TM-2-2020/data/{domain}.json"))) |
|
|
|
random.seed(42) |
|
dial_ids = list(range(len(data))) |
|
random.shuffle(dial_ids) |
|
dial_id2split = {} |
|
for dial_id in dial_ids[:int(0.8*len(dial_ids))]: |
|
dial_id2split[dial_id] = 'train' |
|
for dial_id in dial_ids[int(0.8*len(dial_ids)):int(0.9*len(dial_ids))]: |
|
dial_id2split[dial_id] = 'validation' |
|
for dial_id in dial_ids[int(0.9*len(dial_ids)):]: |
|
dial_id2split[dial_id] = 'test' |
|
|
|
for dial_id, d in tqdm(enumerate(data), desc='processing taskmaster-{}'.format(domain)): |
|
|
|
if len(d['utterances']) == 0: |
|
continue |
|
if len(set([t['speaker'] for t in d['utterances']])) == 1: |
|
continue |
|
data_split = dial_id2split[dial_id] |
|
dialogue_id = f'{dataset}-{data_split}-{len(dialogues_by_split[data_split])}' |
|
cur_domains = [domain] |
|
dialogue = { |
|
'dataset': dataset, |
|
'data_split': data_split, |
|
'dialogue_id': dialogue_id, |
|
'original_id': d["conversation_id"], |
|
'domains': cur_domains, |
|
'turns': [] |
|
} |
|
turns = format_turns(d['utterances']) |
|
prev_state = {} |
|
prev_state.setdefault(domain, copy.deepcopy(ontology['state'][domain])) |
|
|
|
for utt_idx, uttr in enumerate(turns): |
|
speaker = uttr['speaker'] |
|
turn = { |
|
'speaker': speaker, |
|
'utterance': uttr['text'], |
|
'utt_idx': utt_idx, |
|
'dialogue_acts': { |
|
'binary': [], |
|
'categorical': [], |
|
'non-categorical': [], |
|
}, |
|
} |
|
in_span = [0] * len(turn['utterance']) |
|
|
|
if 'segments' in uttr: |
|
|
|
segments = sorted(uttr['segments'], key=lambda x: len(x['text'])) |
|
for segment in segments: |
|
|
|
|
|
item = segment['annotations'][0] |
|
intent = 'inform' |
|
slot = item['name'].split('.', 1)[-1].strip() |
|
if slot in anno2slot[domain]: |
|
if anno2slot[domain][slot] is None: |
|
|
|
continue |
|
elif anno2slot[domain][slot] is False: |
|
|
|
turn['dialogue_acts']['binary'].append({ |
|
'intent': intent, |
|
'domain': domain, |
|
'slot': slot, |
|
}) |
|
continue |
|
else: |
|
slot = anno2slot[domain][slot] |
|
assert slot in ontology['domains'][domain]['slots'], print(domain, [slot]) |
|
assert turn['utterance'][segment['start_index']:segment['end_index']] == segment['text'] |
|
|
|
if sum(in_span[segment['start_index']: segment['end_index']]) > 0: |
|
continue |
|
else: |
|
in_span[segment['start_index']: segment['end_index']] = [1]*(segment['end_index']-segment['start_index']) |
|
turn['dialogue_acts']['non-categorical'].append({ |
|
'intent': intent, |
|
'domain': domain, |
|
'slot': slot, |
|
'value': segment['text'], |
|
'start': segment['start_index'], |
|
'end': segment['end_index'] |
|
}) |
|
|
|
turn['dialogue_acts']['non-categorical'] = sorted(turn['dialogue_acts']['non-categorical'], key=lambda x: x['start']) |
|
|
|
bdas = set() |
|
for da in turn['dialogue_acts']['binary']: |
|
da_tuple = (da['intent'], da['domain'], da['slot'],) |
|
bdas.add(da_tuple) |
|
turn['dialogue_acts']['binary'] = [{'intent':bda[0],'domain':bda[1],'slot':bda[2]} for bda in sorted(bdas)] |
|
|
|
for da_type in turn['dialogue_acts']: |
|
das = turn['dialogue_acts'][da_type] |
|
for da in das: |
|
ontology["dialogue_acts"][da_type].setdefault((da['intent'], da['domain'], da['slot']), {}) |
|
ontology["dialogue_acts"][da_type][(da['intent'], da['domain'], da['slot'])][speaker] = True |
|
|
|
for da in turn['dialogue_acts']['non-categorical']: |
|
slot, value = da['slot'], da['value'] |
|
assert slot in prev_state[domain] |
|
prev_state[domain][slot] = value |
|
|
|
if speaker == 'user': |
|
turn['state'] = copy.deepcopy(prev_state) |
|
|
|
dialogue['turns'].append(turn) |
|
dialogues_by_split[data_split].append(dialogue) |
|
|
|
for da_type in ontology['dialogue_acts']: |
|
ontology["dialogue_acts"][da_type] = sorted([str({'user': speakers.get('user', False), 'system': speakers.get('system', False), 'intent':da[0],'domain':da[1], 'slot':da[2]}) for da, speakers in ontology["dialogue_acts"][da_type].items()]) |
|
dialogues = dialogues_by_split['train']+dialogues_by_split['validation']+dialogues_by_split['test'] |
|
json.dump(dialogues[:10], open(f'dummy_data.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False) |
|
json.dump(ontology, open(f'{new_data_dir}/ontology.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False) |
|
json.dump(dialogues, open(f'{new_data_dir}/dialogues.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False) |
|
with ZipFile('data.zip', 'w', ZIP_DEFLATED) as zf: |
|
for filename in os.listdir(new_data_dir): |
|
zf.write(f'{new_data_dir}/{filename}') |
|
rmtree(original_data_dir) |
|
rmtree(new_data_dir) |
|
return dialogues, ontology |
|
|
|
if __name__ == '__main__': |
|
preprocess() |
|
|