Datasets:

Languages:
English
ArXiv:
License:
tm2 / preprocess.py
zhuqi's picture
Upload preprocess.py
9b483a3
from zipfile import ZipFile, ZIP_DEFLATED
import json
import os
import copy
import zipfile
from tqdm import tqdm
import re
from collections import Counter
from shutil import rmtree
from convlab.util.file_util import read_zipped_json, write_zipped_json
from pprint import pprint
import random
descriptions = {
"flights": {
"flights": "find a round trip or multi-city flights",
"type": "type of the flight",
"destination1": "the first destination city of the trip",
"destination2": "the second destination city of the trip",
"origin": "the origin city of the trip",
"date.depart_origin": "date of departure from origin",
"date.depart_intermediate": "date of departure from intermediate",
"date.return": "date of return",
"time_of_day": "time of the flight",
"seating_class": "seat type (first class, business class, economy class, etc.",
"seat_location": "location of the seat",
"stops": "non-stop, layovers, etc.",
"price_range": "price range of the flight",
"num.pax": "number of people",
"luggage": "luggage information",
"total_fare": "total cost of the trip",
"other_description": "other description of the flight",
"from": "departure of the flight",
"to": "destination of the flight",
"airline": "airline of the flight",
"flight_number": "the number of the flight",
"date": "date of the flight",
"from.time": "departure time of the flight",
"to.time": "arrival time of the flight",
"stops.location": "location of the stop",
"fare": "cost of the flight",
},
"food-ordering": {
"food-ordering": "order take-out for a particular cuisine choice",
"name.item": "name of the item",
"other_description.item": "other description of the item",
"type.retrieval": "type of the retrieval method",
"total_price": "total price",
"time.pickup": "pick up time",
"num.people": "number of people",
"name.restaurant": "name of the restaurant",
"type.food": "type of food",
"type.meal": "type of meal",
"location.restaurant": "location of the restaurant",
"rating.restaurant": "rating of the restaurant",
"price_range": "price range of the food",
},
"hotels": {
"hotels": "find a hotel using typical preferences",
"name.hotel": "name of the hotel",
"location.hotel": "location of the hotel",
"sub_location.hotel": "rough location of the hotel",
"star_rating": "star rating of the hotel",
"customer_rating": "customer rating of the hotel",
"customer_review": "customer review of the hotel",
"price_range": "price range of the hotel",
"amenity": "amenity of the hotel",
"num.beds": "number of beds to book",
"type.bed": "type of the bed",
"num.rooms": "number of rooms to book",
"check-in_date": "check-in date",
"check-out_date": "check-out date",
"date_range": "date range of the reservation",
"num.guests": "number of guests",
"type.room": "type of the room",
"price_per_night": "price per night",
"total_fare": "total fare",
"location": "location of the hotel",
"other_request": "other request",
"other_detail": "other detail",
},
"movies": {
"movies": "find a movie to watch in theaters or using a streaming service at home",
"name.movie": "name of the movie",
"genre": "genre of the movie",
"name.theater": "name of the theater",
"location.theater": "location of the theater",
"time.start": "start time of the movie",
"time.end": "end time of the movie",
"price.ticket": "price of the ticket",
"price.streaming": "price of the streaming",
"type.screening": "type of the screening",
"audience_rating": "audience rating",
"critic_rating": "critic rating",
"movie_rating": "film rating",
"release_date": "release date of the movie",
"runtime": "running time of the movie",
"real_person": "name of actors, directors, etc.",
"character": "name of character in the movie",
"streaming_service": "streaming service that provide the movie",
"num.tickets": "number of tickets",
"seating": "type of seating",
"other_description": "other description about the movie",
"synopsis": "synopsis of the movie",
},
"music": {
"music": "find several tracks to play and then comment on each one",
"name.track": "name of the track",
"name.artist": "name of the artist",
"name.album": "name of the album",
"name.genre": "music genre",
"type.music": "rough type of the music",
"describes_track": "description of a track to find",
"describes_artist": "description of a artist to find",
"describes_album": "description of an album to find",
"describes_genre": "description of a genre to find",
"describes_type.music": "description of the music type",
"technical_difficulty": "there is a technical difficulty",
},
"restaurant-search": {
"restaurant-search": "ask for recommendations for a particular type of cuisine",
"name.restaurant": "name of the restaurant",
"location": "location of the restaurant",
"sub-location": "rough location of the restaurant",
"type.food": "the cuisine of the restaurant",
"menu_item": "item in the menu",
"type.meal": "type of meal",
"rating": "rating of the restaurant",
"price_range": "price range of the restaurant",
"business_hours": "business hours of the restaurant",
"name.reservation": "name of the person who make the reservation",
"num.guests": "number of guests",
"time.reservation": "time of the reservation",
"date.reservation": "date of the reservation",
"type.seating": "type of the seating",
"other_description": "other description of the restaurant",
"phone": "phone number of the restaurant",
},
"sports": {
"sports": "discuss facts and stats about players, teams, games, etc. in EPL, MLB, MLS, NBA, NFL",
"name.team": "name of the team",
"record.team": "record of the team (number of wins and losses)",
"record.games_ahead": "number of games ahead",
"record.games_back": "number of games behind",
"place.team": "ranking of the team",
"result.match": "result of the match",
"score.match": "score of the match",
"date.match": "date of the match",
"day.match": "day of the match",
"time.match": "time of the match",
"name.player": "name of the player",
"position.player": "position of the player",
"record.player": "record of the player",
"name.non_player": "name of non-palyer such as the manager, coach",
"venue": "venue of the match take place",
"other_description.person": "other description of the person",
"other_description.team": "other description of the team",
"other_description.match": "other description of the match",
}
}
anno2slot = {
"flights": {
"date.depart": "date.depart_origin", # rename
"date.intermediate": "date.depart_intermediate", # rename
"flight_booked": False, # transform to binary dialog act
},
"food-ordering": {
"name.person": None, # no sample, ignore
"phone.restaurant": None, # no sample, ignore
"business_hours.restaurant": None, # no sample, ignore
"official_description.restaurant": None, # 1 sample, ignore
},
"hotels": {
"hotel_booked": False, # transform to binary dialog act
},
"movies": {
"time.end.": "time.end", # rename
"seating ticket_booking": "seating", # mixed in the original ontology
"ticket_booking": False, # transform to binary dialog act
"synopsis": False, # too long, 54 words in avg. transform to binary dialog act
},
"music": {},
"restaurant-search": {
"offical_description": False, # too long, 15 words in avg. transform to binary dialog act
},
"sports": {}
}
def format_turns(ori_turns):
# delete invalid turns and merge continuous turns
new_turns = []
previous_speaker = None
utt_idx = 0
for i, turn in enumerate(ori_turns):
speaker = 'system' if turn['speaker'] == 'ASSISTANT' else 'user'
turn['speaker'] = speaker
if turn['text'] == '(deleted)':
continue
if not previous_speaker:
# first turn
assert speaker != previous_speaker
if speaker != previous_speaker:
# switch speaker
previous_speaker = speaker
new_turns.append(copy.deepcopy(turn))
utt_idx += 1
else:
# continuous speaking of the same speaker
last_turn = new_turns[-1]
# skip repeated turn
if turn['text'] in ori_turns[i-1]['text']:
continue
# merge continuous turns
index_shift = len(last_turn['text']) + 1
last_turn['text'] += ' '+turn['text']
if 'segments' in turn:
last_turn.setdefault('segments', [])
for segment in turn['segments']:
segment['start_index'] += index_shift
segment['end_index'] += index_shift
last_turn['segments'] += turn['segments']
return new_turns
def preprocess():
original_data_dir = 'Taskmaster-master'
new_data_dir = 'data'
if not os.path.exists(original_data_dir):
original_data_zip = 'master.zip'
if not os.path.exists(original_data_zip):
raise FileNotFoundError(f'cannot find original data {original_data_zip} in tm2/, should manually download master.zip from https://github.com/google-research-datasets/Taskmaster/archive/refs/heads/master.zip')
else:
archive = ZipFile(original_data_zip)
archive.extractall()
os.makedirs(new_data_dir, exist_ok=True)
ontology = {'domains': {},
'intents': {
'inform': {'description': 'inform the value of a slot or general information.'}
},
'state': {},
'dialogue_acts': {
"categorical": {},
"non-categorical": {},
"binary": {}
}}
global descriptions
global anno2slot
domains = ['flights', 'food-ordering', 'hotels', 'movies', 'music', 'restaurant-search', 'sports']
for domain in domains:
domain_ontology = json.load(open(os.path.join(original_data_dir, f"TM-2-2020/ontology/{domain}.json")))
assert len(domain_ontology) == 1
ontology['domains'][domain] = {'description': descriptions[domain][domain], 'slots': {}}
ontology['state'][domain] = {}
for item in list(domain_ontology.values())[0]:
for anno in item['annotations']:
slot = anno.strip()
if slot in anno2slot[domain]:
if anno2slot[domain][slot] in [None, False]:
continue
else:
slot = anno2slot[domain][slot]
ontology['domains'][domain]['slots'][slot] = {
'description': descriptions[domain][slot],
'is_categorical': False,
'possible_values': [],
}
ontology['state'][domain][slot] = ''
# add missing slots to the ontology
for domain, slot in [('movies', 'price.streaming'), ('restaurant-search', 'phone')]:
ontology['domains'][domain]['slots'][slot] = {
'description': descriptions[domain][slot],
'is_categorical': False,
'possible_values': [],
}
ontology['state'][domain][slot] = ''
dataset = 'tm2'
splits = ['train', 'validation', 'test']
dialogues_by_split = {split:[] for split in splits}
for domain in domains:
data = json.load(open(os.path.join(original_data_dir, f"TM-2-2020/data/{domain}.json")))
# random split, train:validation:test = 8:1:1
random.seed(42)
dial_ids = list(range(len(data)))
random.shuffle(dial_ids)
dial_id2split = {}
for dial_id in dial_ids[:int(0.8*len(dial_ids))]:
dial_id2split[dial_id] = 'train'
for dial_id in dial_ids[int(0.8*len(dial_ids)):int(0.9*len(dial_ids))]:
dial_id2split[dial_id] = 'validation'
for dial_id in dial_ids[int(0.9*len(dial_ids)):]:
dial_id2split[dial_id] = 'test'
for dial_id, d in tqdm(enumerate(data), desc='processing taskmaster-{}'.format(domain)):
# delete empty dialogs and invalid dialogs
if len(d['utterances']) == 0:
continue
if len(set([t['speaker'] for t in d['utterances']])) == 1:
continue
data_split = dial_id2split[dial_id]
dialogue_id = f'{dataset}-{data_split}-{len(dialogues_by_split[data_split])}'
cur_domains = [domain]
dialogue = {
'dataset': dataset,
'data_split': data_split,
'dialogue_id': dialogue_id,
'original_id': d["conversation_id"],
'domains': cur_domains,
'turns': []
}
turns = format_turns(d['utterances'])
prev_state = {}
prev_state.setdefault(domain, copy.deepcopy(ontology['state'][domain]))
for utt_idx, uttr in enumerate(turns):
speaker = uttr['speaker']
turn = {
'speaker': speaker,
'utterance': uttr['text'],
'utt_idx': utt_idx,
'dialogue_acts': {
'binary': [],
'categorical': [],
'non-categorical': [],
},
}
in_span = [0] * len(turn['utterance'])
if 'segments' in uttr:
# sort the span according to the length
segments = sorted(uttr['segments'], key=lambda x: len(x['text']))
for segment in segments:
# Each conversation was annotated by two workers.
# only keep the first annotation for the span
item = segment['annotations'][0]
intent = 'inform' # default intent
slot = item['name'].split('.', 1)[-1].strip()
if slot in anno2slot[domain]:
if anno2slot[domain][slot] is None:
# skip
continue
elif anno2slot[domain][slot] is False:
# binary dialog act
turn['dialogue_acts']['binary'].append({
'intent': intent,
'domain': domain,
'slot': slot,
})
continue
else:
slot = anno2slot[domain][slot]
assert slot in ontology['domains'][domain]['slots'], print(domain, [slot])
assert turn['utterance'][segment['start_index']:segment['end_index']] == segment['text']
# skip overlapped spans, keep the shortest one
if sum(in_span[segment['start_index']: segment['end_index']]) > 0:
continue
else:
in_span[segment['start_index']: segment['end_index']] = [1]*(segment['end_index']-segment['start_index'])
turn['dialogue_acts']['non-categorical'].append({
'intent': intent,
'domain': domain,
'slot': slot,
'value': segment['text'],
'start': segment['start_index'],
'end': segment['end_index']
})
turn['dialogue_acts']['non-categorical'] = sorted(turn['dialogue_acts']['non-categorical'], key=lambda x: x['start'])
bdas = set()
for da in turn['dialogue_acts']['binary']:
da_tuple = (da['intent'], da['domain'], da['slot'],)
bdas.add(da_tuple)
turn['dialogue_acts']['binary'] = [{'intent':bda[0],'domain':bda[1],'slot':bda[2]} for bda in sorted(bdas)]
# add to dialogue_acts dictionary in the ontology
for da_type in turn['dialogue_acts']:
das = turn['dialogue_acts'][da_type]
for da in das:
ontology["dialogue_acts"][da_type].setdefault((da['intent'], da['domain'], da['slot']), {})
ontology["dialogue_acts"][da_type][(da['intent'], da['domain'], da['slot'])][speaker] = True
for da in turn['dialogue_acts']['non-categorical']:
slot, value = da['slot'], da['value']
assert slot in prev_state[domain]
prev_state[domain][slot] = value
if speaker == 'user':
turn['state'] = copy.deepcopy(prev_state)
dialogue['turns'].append(turn)
dialogues_by_split[data_split].append(dialogue)
for da_type in ontology['dialogue_acts']:
ontology["dialogue_acts"][da_type] = sorted([str({'user': speakers.get('user', False), 'system': speakers.get('system', False), 'intent':da[0],'domain':da[1], 'slot':da[2]}) for da, speakers in ontology["dialogue_acts"][da_type].items()])
dialogues = dialogues_by_split['train']+dialogues_by_split['validation']+dialogues_by_split['test']
json.dump(dialogues[:10], open(f'dummy_data.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
json.dump(ontology, open(f'{new_data_dir}/ontology.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
json.dump(dialogues, open(f'{new_data_dir}/dialogues.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
with ZipFile('data.zip', 'w', ZIP_DEFLATED) as zf:
for filename in os.listdir(new_data_dir):
zf.write(f'{new_data_dir}/{filename}')
rmtree(original_data_dir)
rmtree(new_data_dir)
return dialogues, ontology
if __name__ == '__main__':
preprocess()