Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 15,365 Bytes
5ed446c
4066519
 
 
 
b1dae43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4066519
b1dae43
 
 
 
 
 
 
 
 
4066519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef864c8
 
4066519
 
ef864c8
4066519
ef864c8
 
4066519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8de11f1
4066519
8de11f1
 
4066519
 
 
 
 
 
 
 
 
 
 
 
 
5ed446c
b1dae43
 
 
 
 
45b501a
b1dae43
45b501a
950b38b
45b501a
b1dae43
 
 
 
 
 
 
 
 
 
179bec5
4685697
b1dae43
4685697
b1dae43
 
 
 
 
 
 
 
 
 
 
 
 
45b501a
b1dae43
 
 
 
4175aff
b1dae43
 
 
 
 
 
 
 
 
950b38b
b1dae43
 
 
950b38b
b1dae43
950b38b
 
 
b1dae43
 
 
1beaa8a
 
b1dae43
 
 
 
950b38b
 
 
 
 
45b501a
 
950b38b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1dae43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45b501a
b1dae43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45b501a
 
b1dae43
 
 
45b501a
b1dae43
 
 
 
 
 
 
9a0bbdb
b1dae43
9a0bbdb
b1dae43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
---
language_creators:
- crowdsourced
- expert-generated
- machine-generated
language:
- afr
- sqi
- amh
- ara
- aze
- bel
- ben
- bul
- cat
- ceb
- ces
- kur
- cym
- dan
- deu
- ell
- eng
- epo
- est
- eus
- fin
- fra
- gla
- gle
- glg
- guj
- hat
- hau
- heb
- hin
- hun
- hye
- ibo
- ind
- isl
- ita
- jav
- jpn
- kan
- kat
- kaz
- mon
- khm
- kir
- kor
- lao
- lit
- ltz
- lav
- mal
- mar
- mkd
- mlt
- mri
- mya
- nld
- nor
- nep
- sot
- pus
- pes
- mlg
- pol
- por
- ron
- rus
- sin
- slk
- slv
- smo
- sna
- snd
- som
- spa
- srp
- sun
- swe
- swa
- tam
- tel
- tgk
- tha
- tur
- ukr
- urd
- uzb
- vie
- xho
- yid
- yor
- zho
- msa
- zul
- ace
- bjn
- kas
- kau
- min
- mni
- taq
- nso
license: apache-2.0
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
- extended
task_categories:
- text-generation
pretty_name: Aya Evaluation Suite
dataset_info:
- config_name: aya_human_annotated
  features:
  - name: id
    dtype: int64
  - name: inputs
    dtype: string
  - name: targets
    dtype: string
  - name: language
    dtype: string
  - name: script
    dtype: string
  splits:
  - name: test
    num_bytes: 1624958
    num_examples: 1750
  download_size: 974483
  dataset_size: 1624958
- config_name: dolly_human_edited
  features:
  - name: id
    dtype: int64
  - name: inputs
    dtype: string
  - name: targets
    dtype: string
  - name: language
    dtype: string
  - name: script
    dtype: string
  - name: source_id
    dtype: int64
  splits:
  - name: test
    num_bytes: 1219111
    num_examples: 1200
  download_size: 602117
  dataset_size: 1219111
- config_name: dolly_machine_translated
  features:
  - name: id
    dtype: int64
  - name: inputs
    dtype: string
  - name: targets
    dtype: string
  - name: language
    dtype: string
  - name: script
    dtype: string
  - name: source_id
    dtype: int64
  splits:
  - name: test
    num_bytes: 39679355
    num_examples: 23800
  download_size: 20100505
  dataset_size: 39679355
configs:
- config_name: aya_human_annotated
  data_files:
  - split: test
    path: aya_human_annotated/test-*
- config_name: dolly_human_edited
  data_files:
  - split: test
    path: dolly_human_edited/test-*
- config_name: dolly_machine_translated
  data_files:
  - split: test
    path: dolly_machine_translated/test-*
---

![Aya Header](https://huggingface.co/datasets/CohereForAI/aya_dataset/resolve/main/aya_header.png)

# Dataset Summary

`Aya Evaluation Suite` contains a total of 26,750 open-ended conversation-style prompts to evaluate multilingual open-ended generation quality.\
To strike a balance between language coverage and the quality that comes with human curation, we create an evaluation suite that includes:
1) human-curated examples in 7 languages (`tur, eng, yor, arb, zho, por, tel`) → `aya-human-annotated`.
2) machine-translations of handpicked examples into 101 languages → `dolly-machine-translated`.
3) human-post-edited translations into 6 languages (`hin, srp, rus, fra, arb, spa`) → `dolly-human-edited`.

---

- **Curated by:** Contributors of [Aya Open Science Intiative](https://aya.for.ai/), professional annotators, and synthetic generation
- **Language(s):** 101 languages
- **License:** [Apache 2.0](https://opensource.org/license/apache-2-0)
- **Aya Datasets Family:**
  | Name | Explanation |
  |------|--------------|
  | [aya_dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset) | Human-annotated multilingual instruction finetuning dataset, comprising over 204K instances across 65 languages. |
  | [aya_collection](https://huggingface.co/datasets/CohereForAI/aya_collection) | Created by applying instruction-style templates from fluent speakers to 44 datasets, including translations of 19 instruction-style datasets into 101 languages, providing 513M instances for various tasks.|
  | [aya_collection_language_split](https://huggingface.co/datasets/CohereForAI/aya_collection_language_split) | Aya Collection structured based on language level subsets. |
  | [aya_evaluation_suite](https://huggingface.co/datasets/CohereForAI/aya_evaluation_suite) | A diverse evaluation set for multilingual open-ended generation, featuring 250 culturally grounded prompts in 7 languages, 200 translated prompts in 24 languages, and human-edited versions selected for cross-cultural relevance from English Dolly in 6 languages.|
  | [aya_redteaming](https://huggingface.co/datasets/CohereForAI/aya_redteaming)|  A red-teaming dataset consisting of harmful prompts in 8 languages across 9 different categories of harm with explicit labels for "global" and "local" harm.|


# Dataset

The `Aya Evaluation Suite` includes the following subsets:

1. **aya-human-annotated**: 250 original human-written prompts in 7 languages each.
2. **dolly-machine-translated**: 200 human-selected prompts from [databricks-dolly-15k](https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm)
, automatically translated with the [NLLB model](https://ai.meta.com/research/no-language-left-behind/) from English into 101 languages (114 dialects in total).
3. **dolly-human-edited**: 200 dolly-machine-translated prompts post-edited by fluent speakers for 6 languages.


## Load with Datasets
To load this dataset consisting of prompt-completions with `datasets`, you just need to install Datasets as `pip install datasets --upgrade` and then use the following code:

```python
from datasets import load_dataset

aya_eval = load_dataset("CohereForAI/aya_evaluation_suite", "aya_human_annotated")
```

## Data Fields

- `id`: Unique id of the data point.
- `inputs`: Prompt or input to the language model.
- `targets`: Completion or output of the language model. (Not applicable for `dolly-human-edited`)
- `language`: The language of the `prompt` and `completion.`
- `script`:  The writing system of the language.
- `source_id`: Corresponding original row index from the [databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) dataset (Field applicable only for subsets `dolly-machine-translated` & `dolly-human-edited`)

## Data Instances

Example data instances from the `Aya Evaluation Suite` subsets are listed in the toggled sections below.

<details>
<summary> <b>aya-human-annotated</b> </summary>
  
```json
{
"id": 42,
"inputs": "What day is known as Star Wars Day?",
"targets": "May 4th (May the 4th be with you!)",
"language": "eng",
"script": "Latn",
}
```
</details>


<b>Dolly-machine-translated and dolly-human-edited</b>

- These two subsets are parallel datasets (data instances can be mapped using their `id` column).
- Note that in the `dolly-machine-translated` subset, we also include the original English subset (`id 1-200`), which is translated into 101 languages. Furthermore, the field `id` can be used to match the translations of the same data instance across languages. 
- The `source_id` field contains the corresponding original row index from the [databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) dataset.
  <details>
  <summary> <b>dolly-machine-translated</b> </summary>  
  
  ```json
  {
  "id": 2,
  "inputs": "How to escape from a helicopter trapped in water ?",
  "targets": "If you are ever trapped inside a helicopter while submerged in water, it’s best to try and remain calm until the cabin is completely underwater. It’s better to wait for pressure to be equalized, before you try to open the door or break the glass to escape.",
  "language": "eng",
  "script": "Latn",
  "source_id": 6060,
  }
  ```
  </details>
  
  <details>
  <summary> <b>dolly-human-edited</b> </summary>
    
  ```json
  {
  "id": 2,
  "inputs": "Comment peut-on s'échapper d'un hélicoptère piégé dans l'eau ?",
  "targets": "-",
  "language": "fra",
  "script": "Latn",
  "source_id": 6060,
  }
  ```
  </details>

## Statistics

The toggled table below lists the breakdown of languages in each subset.

### Languages

<details>
<summary> <b>aya-human-annotated</b> </summary>

  | ISO Code | Language | Resources |
  |----------|----------|---------------|
  | `tel` | Telugu | Low |
  | `yor` | Yorùbá | Low |
  | `arb` | Arabic | High |
  | `tur` | Turkish | High |
  | `por` | Portuguese | High |
  | `zho` | Chinese (Simplified) | High |
  | `eng` | English | High |
  
</details>


<details>
<summary> <b>dolly-machine-translated</b> </summary>
  
  | ISO Code | Language | Resources |
  |----------|----------|-----------|
  |	`ace`  |	Achinese	|	Low	|
  |	`afr`  |	Afrikaans	|	Mid	|
  |	`amh`  |	Amharic	|	Low	|
  |   `ara` (`arb`, `acm`, `acq`, `aeb`, `ajp`, `apc`, `ars`, `ary` & `arz`)  | Arabic (Standard, Gelet Iraqi, Ta'izzi-Adeni, Tunisian, South Levantine, North Levantine, Najdi, Moroccan & Egyptian) | High |
  |	`aze` (`azb` & `azj`) |	Azerbaijani	(South & North) |	Low	|
  |	`bel`  |	Belarusian	|	Mid	|
  |	`ben`  |	Bengali	|	Mid	|
  |	`bjn`  |	Banjar	|	Low	|
  |	`bul`  |	Bulgarian	|	Mid	|
  |	`cat`  |	Catalan	|	High	|
  |	`ceb`  |	Cebuano	|	Mid	|
  |	`ces`  |	Czech	|	High	|
  |	`cym`  |	Welsh	|	Low	|
  |	`dan`  |	Danish	|	Mid	|
  |	`deu`  |	German	|	High	|
  |	`ell`  |	Greek	|	Mid	|
  |	`eng`  |	English	|	High	|
  |	`epo`  |	Esperanto	|	Low	|
  |	`est`  |	Estonian	|	Mid	|
  |	`eus`  |	Basque	|	High	|
  |	`fin`  |	Finnish	|	High	|
  |	`fra`  |	French	|	High	|
  |	`gla`  |	Scottish Gaelic	|	Low	|
  |	`gle`  |	Irish	|	Low	|
  |	`glg`  |	Galician	|	Mid	|
  |	`guj`  |	Gujarati	|	Low	|
  |	`hat`  |	Haitian Creole	|	Low	|
  |	`hau`  |	Hausa	|	Low	|
  |	`heb`  |	Hebrew	|	Mid	|
  |	`hin`  |	Hindi	|	High	|
  |	`hun`  |	Hungarian	|	High	|
  |	`hye`  |	Armenian	|	Low	|
  |	`ibo`  |	Igbo	|	Low	|
  |	`ind`  |	Indonesian	|	Mid	|
  |	`isl`  |	Icelandic	|	Low	|
  |	`ita`  |	Italian	|	High	|
  |	`jav`  |	Javanese	|	Low	|
  |	`jpn`  |	Japanese	|	High	|
  |	`kan`  |	Kannada	|	Low	|
  |	`kas`  |	Kashmiri	|	Low	|
  |	`kat`  |	Georgian	|	Mid	|
  |	`kau` (`knc`)  |	Kanuri (Central)	|	Low	|
  |	`kaz`  |	Kazakh	|	Mid	|
  |	`khm`  |	Khmer	|	Low	|
  |	`kir`  |	Kyrgyz	|	Low	|
  |	`kor`  |	Korean	|	High	|
  |	`kur` (`ckb` & `kmr`) |	Kurdish (Central & Northern)	|	Low	|
  |	`lao`  |	Lao	|	Low	|
  |	`lav` (`lvs`)  |	Latvian (Standard)	|	Mid	|
  |	`lit`  |	Lithuanian	|	Mid	|
  |	`ltz`  |	Luxembourgish	|	Low	|
  |	`mal`  |	Malayalam	|	Low	|
  |	`mar`  |	Marathi	|	Low	|
  |	`min`  |	Minangkabau	|	Low	|
  |	`mkd`  |	Macedonian	|	Low	|
  |	`mlg` (`plt`)  |	Malagasy (Plateau)	|	Low	|
  |	`mlt`  |	Maltese	|	Low	|
  |	`mni`  |	Manipuri	|	Low	|
  |	`mon` (`khk`)  |	Mongolian (Khalkha)	|	Low	|
  |	`mri`  |	Maori	|	Low	|
  |	`msa` (`zsm`)  |	Malay (Standard)	|	Mid	|
  |	`mya`  |	Burmese	|	Low	|
  |	`nep` (`npi`)  |	Nepali	|	Low	|
  |	`nld`  |	Dutch	|	High	|
  |	`nor` (`nno` & `nob`)  |	Norwegian (Nynorsk & Bokmål)	|	Low	|
  |	`nso`  |	Northern Sotho	|	Low	|
  |	`pes`  |	Persian	|	High	|
  |	`pol`  |	Polish	|	High	|
  |	`por`  |	Portuguese	|	High	|
  |	`pus` (`pbt`)  |	Pashto (Southern)	|	Low	|
  |	`ron`  |	Romanian	|	Mid	|
  |	`rus`  |	Russian	|	High	|
  |	`sin`  |	Sinhala	|	Low	|
  |	`slk`  |	Slovak	|	Mid	|
  |	`slv`  |	Slovenian	|	Mid	|
  |	`smo`  |	Samoan	|	Low	|
  |	`sna`  |	Shona	|	Low	|
  |	`snd`  |	Sindhi	|	Low	|
  |	`som`  |	Somali	|	Low	|
  |	`sot`  |	Southern Sotho	|	Low	|
  |	`spa`  |	Spanish	|	High	|
  |	`sqi` (`als`)  |	Albanian (Tosk)	|	Low	|
  |	`srp`  |	Serbian	|	High	|
  |	`sun`  |	Sundanese	|	Low	|
  |	`swa` (`swh`)  |	Swahili (Coastal) |	Low	|
  |	`swe`  |	Swedish	|	High	|
  |	`tam`  |	Tamil	|	Mid	|
  |	`taq`  |	Tamasheq	|	Low	|
  |	`tel`  |	Telugu	|	Low	|
  |	`tgk`  |	Tajik	|	Low	|
  |	`tha`  |	Thai	|	Mid	|
  |	`tur`  |	Turkish	|	High	|
  |	`ukr`  |	Ukrainian	|	Mid	|
  |	`urd`  |	Urdu	|	Mid	|
  |	`uzb` (`uzn`)  |	Uzbek (Nothern)	|	Mid	|
  |	`vie`  |	Vietnamese	|	High	|
  |	`xho`  |	Xhosa	|	Low	|
  |	`yid` (`ydd`)  |	Yiddish (Eastern)	|	Low	|
  |	`yor`  |	Yoruba	|	Low	|
  |	`zho` (+ `yue`)  |	Chinese	 (Simplified & Cantonese) |	High	|
  |	`zul`  |	Zulu	|	Low	|
</details>

<details>
<summary> <b>dolly-human-edited</b> </summary>
  
  | ISO Code | Language | Resources |
  |----------|----------|-----------|
  | `arb` | Arabic | High |
  | `fra` | French | High |
  | `hin` | Hindi | High |
  | `rus` | Russian | High |
  | `spa` | Spanish | High |
  | `srp` | Serbian | High |

</details>

<br>

# Motivations & Intentions

- **Curation Rationale:** This evaluation suite is tailored to test the generation quality of multilingual models, with the aim of balancing language coverage and human-sourced quality.
It covers prompts originally written in each language, as well as English-centric translated, and manually curated or edited prompts for a linguistically broad, but rich testbed.
The list of languages was initially established from mT5 and aligned with the annotators’ language list and the NLLB translation model.

# Known Limitations

- **Translation Quality:** Note that the expressiveness of the `dolly-machine-translated` subset is limited by the quality of the translation model and may adversely impact an estimate of ability in languages where translations are not adequate. If this subset is used for testing, we recommend it be paired and reported with the professionally post-edited `dolly-human-edited` subset or the `aya-human-annotated` set, which, while covering only 7 languages, is entirely created by proficient target language speakers.
---

# Additional Information

## Provenance
- **Methods Used:** combination of original annotations by volunteers, automatic translation, and post-editing of translations by professional annotators.
- **Methodology Details:**
    -  *Source:* Original annotations from Aya dataset along with translations and post-edits of Dolly dataset
    - *Platform:* [Aya Annotation Platform](https://aya.for.ai/)
    - *Dates of Collection:* May 2023 - Dec 2023


## Dataset Version and Maintenance
- **Maintenance Status:** Actively Maintained
- **Version Details:**
    - *Current version:* 1.0
    - *Last Update:* 02/2024
    - *First Release:* 02/2024
- **Maintenance Plan:** No updates planned.


## Authorship

- **Publishing Organization:** [Cohere For AI](https://cohere.com/research)
- **Industry Type:** Not-for-profit - Tech
- **Contact Details:** https://aya.for.ai/


## Licensing Information
This dataset can be used for any purpose, whether academic or commercial, under the terms of the [Apache 2.0](https://opensource.org/license/apache-2-0) License.


## Citation Information
```bibtex
@misc{singh2024aya,
      title={Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning}, 
      author={Shivalika Singh and Freddie Vargus and Daniel Dsouza and Börje F. Karlsson and Abinaya Mahendiran and Wei-Yin Ko and Herumb Shandilya and Jay Patel and Deividas Mataciunas and Laura OMahony and Mike Zhang and Ramith Hettiarachchi and Joseph Wilson and Marina Machado and Luisa Souza Moura and Dominik Krzemiński and Hakimeh Fadaei and Irem Ergün and Ifeoma Okoh and Aisha Alaagib and Oshan Mudannayake and Zaid Alyafeai and Vu Minh Chien and Sebastian Ruder and Surya Guthikonda and Emad A. Alghamdi and Sebastian Gehrmann and Niklas Muennighoff and Max Bartolo and Julia Kreutzer and Ahmet Üstün and Marzieh Fadaee and Sara Hooker},
      year={2024},
      eprint={2402.06619},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```