# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ DocTamper dataset """ import csv import json import os import lmdb import io from PIL import Image import datasets from datasets.tasks import ImageClassification # TODO: Add BibTeX citation # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @InProceedings{huggingface:dataset, title = {A great new dataset}, author={huggingface, Inc. }, year={2020} } """ # TODO: Add description of the dataset here # You can copy an official description _DESCRIPTION = """\ This dataset was designed to train models to determine image tampering on documents. """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "https://github.com/qcf-568/DocTamper" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" # TODO: Add link to the official dataset URLs here # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URL = "https://storage.googleapis.com/document-image-tampering-dataset/DocTamperV1.zip" # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case class DocTamper(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" VERSION = datasets.Version("1.1.0") # This is an example of a dataset with multiple configurations. # If you don't want/need to define several sub-sets in your dataset, # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. # If you need to make complex sub-parts in the datasets with configurable options # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig # BUILDER_CONFIG_CLASS = MyBuilderConfig # You will be able to load one or the other configurations in the following list with # data = datasets.load_dataset('my_dataset', 'first_domain') # data = datasets.load_dataset('my_dataset', 'second_domain') # BUILDER_CONFIGS = [ # datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"), # # datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"), # ] # DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense. def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Image(), "label": datasets.Image(), } ), homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE ) def _split_generators(self, dl_manager): # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive urls = _URL data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "DocTamperV1/DocTamperV1-TrainingSet"), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "DocTamperV1/DocTamperV1-FCD"), "split": "dev", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "DocTamperV1/DocTamperV1-TestingSet"), "split": "test" }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, split): # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. lmdb_path = filepath env = lmdb.open(lmdb_path, readonly=True) txn = env.begin() idx = 0 while True: image_key = f"image-{idx:09}" label_key = f"label-{idx:09}" image_data = txn.get(image_key.encode()) label_data = txn.get(label_key.encode()) if not image_data or not label_data: break # Yields examples as (key, example) tuples yield idx, { "image": Image.open(io.BytesIO(image_data)), "label": Image.open(io.BytesIO(label_data)), } idx += 1 env.close() # datasets-cli shared/vision-transformers/doctamper_loading_script.py --save_info --all_configs