# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
DocTamper dataset | |
""" | |
import csv | |
import json | |
import os | |
import lmdb | |
import io | |
from PIL import Image | |
import datasets | |
from datasets.tasks import ImageClassification | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@InProceedings{huggingface:dataset, | |
title = {A great new dataset}, | |
author={huggingface, Inc. | |
}, | |
year={2020} | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
This dataset was designed to train models to determine image tampering on documents. | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "https://github.com/qcf-568/DocTamper" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "" | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URL = "https://storage.googleapis.com/document-image-tampering-dataset/DocTamperV1.zip" | |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case | |
class DocTamper(datasets.GeneratorBasedBuilder): | |
"""TODO: Short description of my dataset.""" | |
VERSION = datasets.Version("1.1.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
# BUILDER_CONFIGS = [ | |
# datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"), | |
# # datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"), | |
# ] | |
# DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"image": datasets.Image(), | |
"label": datasets.Image(), | |
} | |
), | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
license=_LICENSE | |
) | |
def _split_generators(self, dl_manager): | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
urls = _URL | |
data_dir = dl_manager.download_and_extract(urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "DocTamperV1/DocTamperV1-TrainingSet"), | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "DocTamperV1/DocTamperV1-FCD"), | |
"split": "dev", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "DocTamperV1/DocTamperV1-TestingSet"), | |
"split": "test" | |
}, | |
), | |
] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath, split): | |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
lmdb_path = filepath | |
env = lmdb.open(lmdb_path, readonly=True) | |
txn = env.begin() | |
idx = 0 | |
while True: | |
image_key = f"image-{idx:09}" | |
label_key = f"label-{idx:09}" | |
image_data = txn.get(image_key.encode()) | |
label_data = txn.get(label_key.encode()) | |
if not image_data or not label_data: | |
break | |
# Yields examples as (key, example) tuples | |
yield idx, { | |
"image": Image.open(io.BytesIO(image_data)), | |
"label": Image.open(io.BytesIO(label_data)), | |
} | |
idx += 1 | |
env.close() | |
# datasets-cli shared/vision-transformers/doctamper_loading_script.py --save_info --all_configs |