Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
File size: 6,406 Bytes
a78d6da
 
930f33a
 
 
 
 
 
 
 
4246462
 
 
 
a78d6da
e776e05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d28a5d8
 
e776e05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d28a5d8
e776e05
 
 
 
 
 
d28a5d8
e776e05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
465e88a
e776e05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
930f33a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
license: cc-by-nc-4.0
dataset_info:
  features:
  - name: SOURCE
    dtype: string
  - name: TARGET
    dtype: string
  splits:
  - name: train
    num_bytes: 1724952
    num_examples: 5000
  download_size: 913357
  dataset_size: 1724952
---

# Dataset Card for CLARA-MeD-5000

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
- [Dataset Creation](#dataset-creation)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://clara-nlp.uned.es/home/med/](https://clara-nlp.uned.es/home/med/)
- **Repositories:** [https://github.com/lcampillos/CLARA-MeD](https://github.com/lcampillos/CLARA-MeD), [https://digital.csic.es/handle/10261/269887](https://digital.csic.es/handle/10261/269887)
- **Paper:** [http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6439](http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6439)
- **DOI:** [https://doi.org/10.20350/digitalCSIC/14644](https://doi.org/10.20350/digitalCSIC/14644)
- **Point of Contact:** [Leonardo Campillos-Llanos]([email protected])

### Dataset Summary

A parallel corpus with 5000 sentence pairs of professional and laymen variants as a benchmark for medical text simplification. This dataset was collected in the CLARA-MeD project, with the goal of simplifying medical texts in the Spanish language and reducing the language barrier to patient's informed decision making.

The corpus gathers 2 subsets:

- 3800 parallel sentences (149 862 tokens) semi-automatically aligned and revised by linguists.
- 1200 parallel sentences (144 019 tokens) manually simplified by linguists.

### Supported Tasks and Leaderboards

Medical text simplification

### Languages

Spanish

## Dataset Structure

### Data Instances

For each instance, there is a string for the source text (professional version), and a string for the target text (simplified version).

```
{'SOURCE': 'Varones mayores de 18 años, diagnosticados de alopecia androgénica grados I-IV de Sinclair, que no estén realizando ningún tratamiento capilar en la actualidad ni lo hayan realizado en los últimos 3 meses.'
 'TARGET': 'Hombres mayores de 18 años, diagnosticados de alopecia androgénica (calvicie) grados I-IV de Sinclair. Estos hombres no estarán realizando ningún tratamiento para el cabello en la actualidad ni lo habrán realizado en los últimos 3 meses.'}
```

### Data Fields

- `SOURCE`: a string containing the professional version. 
- `TARGET`: a string containing the simplified version. 

## Dataset Creation

### Source Data

#### Who are the source language producers?

1. Drug leaflets and summaries of product characteristics from [CIMA](https://cima.aemps.es)
2. Cancer-related information summaries from the [National Cancer Institute](https://www.cancer.gov/)
3. Clinical trials announcements from [EudraCT](https://www.clinicaltrialsregister.eu/)

### Annotations

#### Annotation process

- 3800 sentences: Semi-automatic alignment of technical and patient versions of medical sentences. Inter-annotator agreement measured with Cohen's Kappa (average Kappa = 0.839 +- 0.076; very high agreement).
- 1200 sentences: Manual simplification technical medical sentences, both at the syntactic and lexical level. Three independent evaluators assessed the quality of the simplification by means of a 5-point Likert scale questionnaires. Human evaluators scored the simplified sentences according to grammar/fluency (average 4.8%), semantic adequacy/meaning coherence (average 4.9%) and overall simplification (average 4.3%). 

#### Who are the annotators?

- 3800 sentences: <br>
Leonardo Campillos-Llanos<br>
Adrián Capllonch-Carrión<br>
Ana Rosa Terroba-Reinares<br>
Ana Valverde-Mateos<br>
Sofía Zakhir-Puig<br>

- 1200 sentences: <br>
Rocío Bartolomé-Rodríguez<br>
Leonardo Campillos-Llanos<br>
Ana Rosa Terroba-Reinares<br>

### Personal and Sensitive Information

No personal and sensitive information was used.

### Licensing Information

These data are aimed at research and educational purposes, and released under a Creative Commons Non-Commercial Attribution (CC-BY-NC-A) 4.0 International License.

### Citation Information

- 3800 sentences: Campillos Llanos, L., Terroba Reinares, A. R., Zakhir Puig, S., Valverde, A., & Capllonch-Carrión, A. (2022). Building a comparable corpus and a benchmark for Spanish medical text simplification. *Procesamiento del lenguaje natural*, 69, pp. 189--196. 

```
@article{2022claramedcorpus,
  title={Building a comparable corpus and a benchmark for Spanish medical text simplification},
  author={Campillos-Llanos, Leonardo and Terroba Reinares, Ana R., and Zakhir Puig, Sofía, and Valverde-Mateos, Ana and Capllonch-Carri{\'o}n},
  title={Procesamiento del Lenguaje Natural},
  volume={69},
  year={2022},
  pages={189--196},
  publisher={Sociedad Espa{\~n}ola para el Procesamiento del Lenguaje Natural}
}
```

- 1200 sentences: Campillos-Llanos, L., Bartolomé-Rodríguez, R. & Terroba-Reinares, A. R. (2024) Enhancing the understanding of clinical trials with a sentence-level simplification dataset. *Procesamiento del Lenguaje Natural*, 72, pp. 31--43.

```
@article{campillosetal2024,
  title={Enhancing the understanding of clinical trials with a sentence-level simplification dataset},
  author={Campillos-Llanos, Leonardo and Bartolom{\'e}-Rodr{\'i}guez, Roc{\'i}o and Terroba Reinares, Ana R.},
  title={Procesamiento del Lenguaje Natural},
  volume={72},
  year={2024},
  pages={31--43},
  publisher={Sociedad Espa{\~n}ola para el Procesamiento del Lenguaje Natural}
}
```

### Contributions

Thanks to [Jónathan Heras from Universidad de La Rioja](http://www.unirioja.es/cu/joheras) ([@joheras](https://github.com/joheras)) for formatting this dataset for Hugging Face.