File size: 5,300 Bytes
59b39bb
 
 
 
 
4c0ab76
59b39bb
 
c26dd70
 
 
 
 
 
 
 
 
 
6869621
59b39bb
 
 
 
 
c26dd70
 
59b39bb
 
 
 
 
 
b51ea46
59b39bb
 
b51ea46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59b39bb
 
 
 
c26dd70
 
 
59b39bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f310ca7
 
 
 
 
 
 
 
59b39bb
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
language:
- fr
license: mit
size_categories:
- 100K<n<1M
task_categories:
- text-generation
tags:
- DFP
- french prompts
annotations_creators:
- found
language_creators:
- found
multilinguality:
- monolingual
source_datasets:
- etalab-ia/piaf 
---

# piaf_fr_prompt_context_generation_with_answer_and_question
## Summary

**piaf_fr_prompt_context_generation_with_answer_and_question** is a subset of the [**Dataset of French Prompts (DFP)**](https://huggingface.co/datasets/CATIE-AQ/DFP).  
It contains **442,752** rows that can be used for a context-generation (with answer and question) task.  
The original data (without prompts) comes from the dataset [PIAF](https://huggingface.co/datasets/etalab-ia/piaf) and was augmented by questions in SQUAD 2.0 format in the [FrenchQA]( https://huggingface.co/datasets/CATIE-AQ/frenchQA) dataset.
A list of prompts (see below) was then applied in order to build the input and target columns and thus obtain the same format as the [xP3](https://huggingface.co/datasets/bigscience/xP3) dataset by Muennighoff et al.


## Prompts used
### List
24 prompts were created for this dataset. The logic applied consists in proposing prompts in the indicative tense, in the form of tutoiement and in the form of vouvoiement.

```
'Étant donné la réponse "'+ answer+'" à la question "'+question+'", écrire un texte explicatif.\nTexte : ',  
'Étant donné la réponse "'+ answer+'" à la question "'+question+'", écris un texte explicatif.\nTexte : ',  
'Étant donné la réponse "'+ answer+'" à la question "'+question+'", écrivez un texte explicatif.\nTexte : ',  
'Étant donné la réponse "'+ answer+'" à la question "'+question+'", rédiger un texte explicatif.\nTexte : ',  
'Étant donné la réponse "'+ answer+'" à la question "'+question+'", rédige un texte explicatif.\nTexte : ',  
'Étant donné la réponse "'+ answer+'" à la question "'+question+'", rédigez un texte explicatif.\nTexte : ',  
'Étant donné la réponse "'+ answer+'" à la question "'+question+'", générer un texte explicatif.\nTexte : ',  
'Étant donné la réponse "'+ answer+'" à la question "'+question+'", génère un texte explicatif.\nTexte : ',  
'Étant donné la réponse "'+ answer+'" à la question "'+question+'", générez un texte explicatif.\nTexte : ',  
'Étant donné la réponse "'+ answer+'" à la question "'+question+'", créer un texte explicatif.\nTexte : ',  
'Étant donné la réponse "'+ answer+'" à la question "'+question+'", crée un texte explicatif.\nTexte : ',  
'Étant donné la réponse "'+ answer+'" à la question "'+question+'", créez un texte explicatif.\nTexte : ',  
'Ecrire un texte comme contexte de la réponse "'+ answer+'" à la question "'+question+'" \nTexte : ',  
'Ecris un texte comme contexte de la réponse "'+ answer+'" à la question "'+question+'" \nTexte : ',  
'Ecrivez un texte comme contexte de la réponse "'+ answer+'" à la question "'+question+'" \nTexte : ',  
'Rédiger un texte comme contexte de la réponse "'+ answer+'" à la question "'+question+'" \nTexte : ',  
'Rédige un texte comme contexte de la réponse "'+ answer+'" à la question "'+question+'" \nTexte : ',  
'Rédigez un texte comme contexte de la réponse "'+ answer+'" à la question "'+question+'" \nTexte : ',  
'Générer un texte comme contexte de la réponse "'+ answer+'" à la question "'+question+'" \nTexte : ',  
'Génère un texte comme contexte de la réponse "'+ answer+'" à la question "'+question+'" \nTexte : ',  
'Générez un texte comme contexte de la réponse "'+ answer+'" à la question "'+question+'" \nTexte : ',  
'Créer un texte comme contexte de la réponse "'+ answer+'" à la question "'+question+'" \nTexte : ',  
'Crée un texte comme contexte de la réponse "'+ answer+'" à la question "'+question+'" \nTexte : ',  
'Créez un texte comme contexte de la réponse "'+ answer+'" à la question "'+question+'" \nTexte : ' 
```


# Splits
- `train` with 442,752 samples
- no `valid` split
- no `test` split


# How to use?
```
from datasets import load_dataset
dataset = load_dataset("CATIE-AQ/piaf_fr_prompt_context_generation_with_answer_and_question")
```


# Citation
## Original data
> @InProceedings{keraron-EtAl:2020:LREC,
  author    = {Keraron, Rachel  and  Lancrenon, Guillaume  and  Bras, Mathilde  and  Allary, Frédéric  and  Moyse, Gilles  and  Scialom, Thomas  and  Soriano-Morales, Edmundo-Pavel  and  Staiano, Jacopo},
  title     = {Project PIAF: Building a Native French Question-Answering Dataset},
  booktitle      = {Proceedings of The 12th Language Resources and Evaluation Conference},
  month          = {May},
  year           = {2020},
  address        = {Marseille, France},
  publisher      = {European Language Resources Association},
  pages     = {5483--5492},
  url       = {https://www.aclweb.org/anthology/2020.lrec-1.673}
}



## This Dataset
> @misc {centre_aquitain_des_technologies_de_l'information_et_electroniques_2023,  
	author       = { {Centre Aquitain des Technologies de l'Information et Electroniques} },  
	title        = { DFP (Revision 1d24c09) },  
	year         = 2023,  
	url          = { https://huggingface.co/datasets/CATIE-AQ/DFP },  
	doi          = { 10.57967/hf/1200 },  
	publisher    = { Hugging Face }  
}



## License
MIT