|
|
|
|
|
"""Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering""" |
|
|
|
import json |
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_DESCRIPTION = """\ |
|
Mintaka is a complex, natural, and multilingual dataset designed for experimenting with end-to-end |
|
question-answering models. Mintaka is composed of 20,000 question-answer pairs collected in English, |
|
annotated with Wikidata entities, and translated into Arabic, French, German, Hindi, Italian, |
|
Japanese, Portuguese, and Spanish for a total of 180,000 samples. |
|
Mintaka includes 8 types of complex questions, including superlative, intersection, and multi-hop questions, |
|
which were naturally elicited from crowd workers. |
|
""" |
|
|
|
_CITATION = """\ |
|
@inproceedings{sen-etal-2022-mintaka, |
|
title = "Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering", |
|
author = "Sen, Priyanka and Aji, Alham Fikri and Saffari, Amir", |
|
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", |
|
month = oct, |
|
year = "2022", |
|
address = "Gyeongju, Republic of Korea", |
|
publisher = "International Committee on Computational Linguistics", |
|
url = "https://aclanthology.org/2022.coling-1.138", |
|
pages = "1604--1619" |
|
} |
|
""" |
|
|
|
_LICENSE = """\ |
|
Copyright Amazon.com Inc. or its affiliates. |
|
Attribution 4.0 International |
|
""" |
|
|
|
_TRAIN_URL = "https://raw.githubusercontent.com/amazon-science/mintaka/main/data/mintaka_train.json" |
|
_DEV_URL = "https://raw.githubusercontent.com/amazon-science/mintaka/main/data/mintaka_dev.json" |
|
_TEST_URL = "https://raw.githubusercontent.com/amazon-science/mintaka/main/data/mintaka_test.json" |
|
|
|
|
|
_LANGUAGES = ['en', 'ar', 'de', 'ja', 'hi', 'pt', 'es', 'it', 'fr'] |
|
|
|
_ALL = "all" |
|
|
|
class Mintaka(datasets.GeneratorBasedBuilder): |
|
"""Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name = name, |
|
version = datasets.Version("1.0.0"), |
|
description = f"Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering for {name}", |
|
) for name in _LANGUAGES |
|
] |
|
|
|
BUILDER_CONFIGS.append(datasets.BuilderConfig( |
|
name = _ALL, |
|
version = datasets.Version("1.0.0"), |
|
description = f"Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering", |
|
)) |
|
|
|
DEFAULT_CONFIG_NAME = 'en' |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"lang": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answerText": datasets.Value("string"), |
|
"category": datasets.Value("string"), |
|
"complexityType": datasets.Value("string"), |
|
"questionEntity": [{ |
|
"name": datasets.Value("string"), |
|
"entityType": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
"mention": datasets.Value("string"), |
|
"span": [datasets.Value("int32")], |
|
}], |
|
"answerEntity": [{ |
|
"name": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
}] |
|
}, |
|
), |
|
supervised_keys=None, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"file": dl_manager.download_and_extract(_TRAIN_URL), |
|
"lang": self.config.name, |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"file": dl_manager.download_and_extract(_DEV_URL), |
|
"lang": self.config.name, |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"file": dl_manager.download_and_extract(_TEST_URL), |
|
"lang": self.config.name, |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, file, lang): |
|
if lang == _ALL: |
|
langs = _LANGUAGES |
|
else: |
|
langs = [lang] |
|
|
|
key_ = 0 |
|
|
|
logger.info("⏳ Generating examples from = %s", ", ".join(lang)) |
|
|
|
with open(file, encoding='utf-8') as json_file: |
|
data = json.load(json_file) |
|
for lang in langs: |
|
for sample in data: |
|
questionEntity = [ |
|
{ |
|
"name": str(qe["name"]), |
|
"entityType": qe["entityType"], |
|
"label": qe["label"] if "label" in qe else "", |
|
|
|
"mention": qe["mention"] if lang == "en" else None, |
|
"span": qe["span"] if lang == "en" else [], |
|
} for qe in sample["questionEntity"] |
|
] |
|
|
|
answers = [] |
|
if sample['answer']["answerType"] == "entity" and sample['answer']['answer'] is not None: |
|
answers = sample['answer']['answer'] |
|
elif sample['answer']["answerType"] == "numerical" and "supportingEnt" in sample["answer"]: |
|
answers = sample['answer']['supportingEnt'] |
|
|
|
|
|
def get_label(labels, lang): |
|
if lang in labels: |
|
return labels[lang] |
|
if 'en' in labels: |
|
return labels['en'] |
|
return None |
|
|
|
answerEntity = [ |
|
{ |
|
"name": str(ae["name"]), |
|
"label": get_label(ae["label"], lang), |
|
} for ae in answers |
|
] |
|
|
|
yield key_, { |
|
"id": sample["id"], |
|
"lang": lang, |
|
"question": sample["question"] if lang == 'en' else sample['translations'][lang], |
|
"answerText": sample["answer"]["mention"], |
|
"category": sample["category"], |
|
"complexityType": sample["complexityType"], |
|
"questionEntity": questionEntity, |
|
"answerEntity": answerEntity, |
|
} |
|
|
|
key_ += 1 |
|
|