--- license: mit ---
# StableV2V: Stablizing Shape Consistency in Video-to-Video Editing Chang Liu, Rui Li, Kaidong Zhang, Yunwei Lan, Dong Liu [[`Paper`]](https://arxiv.org/abs/2411.11045) / [[`Project`]](https://alonzoleeeooo.github.io/StableV2V/) / [[`GitHub`]](https://github.com/AlonzoLeeeooo/StableV2V) / [[`Models`]](https://huggingface.co/AlonzoLeeeooo/StableV2V)
HuggingFace repo of the testing benchmark `DAVIS-Edit` proposed in the paper titled "StableV2V: Stablizing Shape Consistency in Video-to-Video Editing". # Data Structure We follow the same data structure as the one of [`DAVIS`](https://davischallenge.org/), as is shown below: ``` DAVIS-Edit ├── Annotations <----- Official annotated masks of DAVIS ├── bear ├── blackswan ├── ... └── train ├── JPEGImages <----- Official video frames of DAVIS ├── bear ├── blackswan ├── ... └── train ├── ReferenceImages <----- Annotated reference images for image-based editing on DAVIS-Edit ├── bear.png ├── blackswan.png ├── ... └── train.png ├── .gitattributes ├── README.md ├── edited_video_caption_dict_image.json <----- Annotated text descriptions for image-based editing on DAVIS-Edit └── edited_video_caption_dict_text.json <----- Annotated text descriptions for text-based editing on DAVIS-Edit ``` Specifically, `edited_video_caption_dict_image.json` and `edited_video_caption_dict_text.json` are constructed as Python dictionary, with its keys as the names of video folders in `JPEGImages`. For example in `edited_video_caption_dict_text.json`: ```json { "bear": { "original": "a bear walking on rocks in a zoo", "similar": "A panda walking on rocks in a zoo", "changing": "A rabbit walking on rocks in a zoo" }, ... ``` The annotations of reference images contain two sub-folders, i.e., `similar` and `changing`, corresponding to the annotations for `DAVIS-Edit-S` and `DAVIS-Edit-C`, respectively, where the structure are constructed in the same folder name as that in `JPEGImages`. # How to use DAVIS-Edit? We highly recommend you to index different elements in `DAVIS-Edit` through the *annotation files*. Particularly, you may refer to the script below: ```python import os import json from tqdm import tqdm from PIL import Image # TODO: Modify the configurations here to your local paths frame_root = 'JPEGImages' mask_root = 'Annotations' reference_image_root = 'ReferenceImages/similar' # Or 'ReferenceImages/changing' annotation_file_path = 'edited_video_caption_dict_text.json' # Load the annotation file with open(annotation_file_path, 'r') as f: annotations = json.load(f) # Iterate all data samples in DAVIS-Edit for video_name in tqdm(annotations.keys()): # Load text prompts original_prompt = annotations[video_name]['original'] similar_prompt = annotations[video_name]['similar'] changing_prompt = annotations[video_name]['changing'] # Load reference images reference_image = Image.open(os.path.join(reference_image_root, video_name + '.png')) # Load video frames video_frames = [] for path in sorted(os.listdir(os.path.join(frame_root, video_name))): if path != 'Thumbs.db' and path != '.DS_store': video_frames.append(Image.open(os.path.join(frame_root, path))) # Load masks masks = [] for path in sorted(os.listdir(os.path.join(mask_root, video_name))): if path != 'Thumbs.db' and path != '.DS_store': masks.append(Image.open(os.path.join(frame_root, path))) # (add further operations that you expect in the lines below) ```