Upload lora-scripts/sd-scripts/finetune/make_captions_by_git.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/finetune/make_captions_by_git.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
|
5 |
+
from pathlib import Path
|
6 |
+
from PIL import Image
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from library.device_utils import init_ipex, get_preferred_device
|
11 |
+
init_ipex()
|
12 |
+
|
13 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
14 |
+
from transformers.generation.utils import GenerationMixin
|
15 |
+
|
16 |
+
import library.train_util as train_util
|
17 |
+
from library.utils import setup_logging
|
18 |
+
setup_logging()
|
19 |
+
import logging
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
+
|
24 |
+
PATTERN_REPLACE = [
|
25 |
+
re.compile(r'(has|with|and) the (words?|letters?|name) (" ?[^"]*"|\w+)( ?(is )?(on|in) (the |her |their |him )?\w+)?'),
|
26 |
+
re.compile(r'(with a sign )?that says ?(" ?[^"]*"|\w+)( ?on it)?'),
|
27 |
+
re.compile(r"(with a sign )?that says ?(' ?(i'm)?[^']*'|\w+)( ?on it)?"),
|
28 |
+
re.compile(r"with the number \d+ on (it|\w+ \w+)"),
|
29 |
+
re.compile(r'with the words "'),
|
30 |
+
re.compile(r"word \w+ on it"),
|
31 |
+
re.compile(r"that says the word \w+ on it"),
|
32 |
+
re.compile("that says'the word \"( on it)?"),
|
33 |
+
]
|
34 |
+
|
35 |
+
# 誤検知しまくりの with the word xxxx を消す
|
36 |
+
|
37 |
+
|
38 |
+
def remove_words(captions, debug):
|
39 |
+
removed_caps = []
|
40 |
+
for caption in captions:
|
41 |
+
cap = caption
|
42 |
+
for pat in PATTERN_REPLACE:
|
43 |
+
cap = pat.sub("", cap)
|
44 |
+
if debug and cap != caption:
|
45 |
+
logger.info(caption)
|
46 |
+
logger.info(cap)
|
47 |
+
removed_caps.append(cap)
|
48 |
+
return removed_caps
|
49 |
+
|
50 |
+
|
51 |
+
def collate_fn_remove_corrupted(batch):
|
52 |
+
"""Collate function that allows to remove corrupted examples in the
|
53 |
+
dataloader. It expects that the dataloader returns 'None' when that occurs.
|
54 |
+
The 'None's in the batch are removed.
|
55 |
+
"""
|
56 |
+
# Filter out all the Nones (corrupted examples)
|
57 |
+
batch = list(filter(lambda x: x is not None, batch))
|
58 |
+
return batch
|
59 |
+
|
60 |
+
|
61 |
+
def main(args):
|
62 |
+
r"""
|
63 |
+
transformers 4.30.2で、バッチサイズ>1でも動くようになったので、以下コメントアウト
|
64 |
+
|
65 |
+
# GITにバッチサイズが1より大きくても動くようにパッチを当てる: transformers 4.26.0用
|
66 |
+
org_prepare_input_ids_for_generation = GenerationMixin._prepare_input_ids_for_generation
|
67 |
+
curr_batch_size = [args.batch_size] # ループの最後で件数がbatch_size未満になるので入れ替えられるように
|
68 |
+
|
69 |
+
# input_idsがバッチサイズと同じ件数である必要がある:バッチサイズはこの関数から参照できないので外から渡す
|
70 |
+
# ここより上で置き換えようとするとすごく大変
|
71 |
+
def _prepare_input_ids_for_generation_patch(self, bos_token_id, encoder_outputs):
|
72 |
+
input_ids = org_prepare_input_ids_for_generation(self, bos_token_id, encoder_outputs)
|
73 |
+
if input_ids.size()[0] != curr_batch_size[0]:
|
74 |
+
input_ids = input_ids.repeat(curr_batch_size[0], 1)
|
75 |
+
return input_ids
|
76 |
+
|
77 |
+
GenerationMixin._prepare_input_ids_for_generation = _prepare_input_ids_for_generation_patch
|
78 |
+
"""
|
79 |
+
|
80 |
+
logger.info(f"load images from {args.train_data_dir}")
|
81 |
+
train_data_dir_path = Path(args.train_data_dir)
|
82 |
+
image_paths = train_util.glob_images_pathlib(train_data_dir_path, args.recursive)
|
83 |
+
logger.info(f"found {len(image_paths)} images.")
|
84 |
+
|
85 |
+
# できればcacheに依存せず明示的にダウンロードしたい
|
86 |
+
logger.info(f"loading GIT: {args.model_id}")
|
87 |
+
git_processor = AutoProcessor.from_pretrained(args.model_id)
|
88 |
+
git_model = AutoModelForCausalLM.from_pretrained(args.model_id).to(DEVICE)
|
89 |
+
logger.info("GIT loaded")
|
90 |
+
|
91 |
+
# captioningする
|
92 |
+
def run_batch(path_imgs):
|
93 |
+
imgs = [im for _, im in path_imgs]
|
94 |
+
|
95 |
+
# curr_batch_size[0] = len(path_imgs)
|
96 |
+
inputs = git_processor(images=imgs, return_tensors="pt").to(DEVICE) # 画像はpil形式
|
97 |
+
generated_ids = git_model.generate(pixel_values=inputs.pixel_values, max_length=args.max_length)
|
98 |
+
captions = git_processor.batch_decode(generated_ids, skip_special_tokens=True)
|
99 |
+
|
100 |
+
if args.remove_words:
|
101 |
+
captions = remove_words(captions, args.debug)
|
102 |
+
|
103 |
+
for (image_path, _), caption in zip(path_imgs, captions):
|
104 |
+
with open(os.path.splitext(image_path)[0] + args.caption_extension, "wt", encoding="utf-8") as f:
|
105 |
+
f.write(caption + "\n")
|
106 |
+
if args.debug:
|
107 |
+
logger.info(f"{image_path} {caption}")
|
108 |
+
|
109 |
+
# 読み込みの高速化のためにDataLoaderを使うオプション
|
110 |
+
if args.max_data_loader_n_workers is not None:
|
111 |
+
dataset = train_util.ImageLoadingDataset(image_paths)
|
112 |
+
data = torch.utils.data.DataLoader(
|
113 |
+
dataset,
|
114 |
+
batch_size=args.batch_size,
|
115 |
+
shuffle=False,
|
116 |
+
num_workers=args.max_data_loader_n_workers,
|
117 |
+
collate_fn=collate_fn_remove_corrupted,
|
118 |
+
drop_last=False,
|
119 |
+
)
|
120 |
+
else:
|
121 |
+
data = [[(None, ip)] for ip in image_paths]
|
122 |
+
|
123 |
+
b_imgs = []
|
124 |
+
for data_entry in tqdm(data, smoothing=0.0):
|
125 |
+
for data in data_entry:
|
126 |
+
if data is None:
|
127 |
+
continue
|
128 |
+
|
129 |
+
image, image_path = data
|
130 |
+
if image is None:
|
131 |
+
try:
|
132 |
+
image = Image.open(image_path)
|
133 |
+
if image.mode != "RGB":
|
134 |
+
image = image.convert("RGB")
|
135 |
+
except Exception as e:
|
136 |
+
logger.error(f"Could not load image path / 画像を読み込めません: {image_path}, error: {e}")
|
137 |
+
continue
|
138 |
+
|
139 |
+
b_imgs.append((image_path, image))
|
140 |
+
if len(b_imgs) >= args.batch_size:
|
141 |
+
run_batch(b_imgs)
|
142 |
+
b_imgs.clear()
|
143 |
+
|
144 |
+
if len(b_imgs) > 0:
|
145 |
+
run_batch(b_imgs)
|
146 |
+
|
147 |
+
logger.info("done!")
|
148 |
+
|
149 |
+
|
150 |
+
def setup_parser() -> argparse.ArgumentParser:
|
151 |
+
parser = argparse.ArgumentParser()
|
152 |
+
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
|
153 |
+
parser.add_argument("--caption_extension", type=str, default=".caption", help="extension of caption file / 出力されるキャプションファイルの拡張子")
|
154 |
+
parser.add_argument(
|
155 |
+
"--model_id",
|
156 |
+
type=str,
|
157 |
+
default="microsoft/git-large-textcaps",
|
158 |
+
help="model id for GIT in Hugging Face / 使用するGITのHugging FaceのモデルID",
|
159 |
+
)
|
160 |
+
parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ")
|
161 |
+
parser.add_argument(
|
162 |
+
"--max_data_loader_n_workers",
|
163 |
+
type=int,
|
164 |
+
default=None,
|
165 |
+
help="enable image reading by DataLoader with this number of workers (faster) / DataLoaderによる画像読み込みを有効にしてこのワーカー数を適用する(読み込みを高速化)",
|
166 |
+
)
|
167 |
+
parser.add_argument("--max_length", type=int, default=50, help="max length of caption / captionの最大長")
|
168 |
+
parser.add_argument(
|
169 |
+
"--remove_words",
|
170 |
+
action="store_true",
|
171 |
+
help="remove like `with the words xxx` from caption / `with the words xxx`のような部分をキャプションから削除する",
|
172 |
+
)
|
173 |
+
parser.add_argument("--debug", action="store_true", help="debug mode")
|
174 |
+
parser.add_argument("--recursive", action="store_true", help="search for images in subfolders recursively / サブフォルダを再帰的に検索する")
|
175 |
+
|
176 |
+
return parser
|
177 |
+
|
178 |
+
|
179 |
+
if __name__ == "__main__":
|
180 |
+
parser = setup_parser()
|
181 |
+
|
182 |
+
args = parser.parse_args()
|
183 |
+
main(args)
|