ACCC1380 commited on
Commit
b350626
1 Parent(s): 29b5f29

Upload lora-scripts/sd-scripts/train_db.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. lora-scripts/sd-scripts/train_db.py +529 -0
lora-scripts/sd-scripts/train_db.py ADDED
@@ -0,0 +1,529 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DreamBooth training
2
+ # XXX dropped option: fine_tune
3
+
4
+ import argparse
5
+ import itertools
6
+ import math
7
+ import os
8
+ from multiprocessing import Value
9
+ import toml
10
+
11
+ from tqdm import tqdm
12
+
13
+ import torch
14
+ from library import deepspeed_utils
15
+ from library.device_utils import init_ipex, clean_memory_on_device
16
+
17
+
18
+ init_ipex()
19
+
20
+ from accelerate.utils import set_seed
21
+ from diffusers import DDPMScheduler
22
+
23
+ import library.train_util as train_util
24
+ import library.config_util as config_util
25
+ from library.config_util import (
26
+ ConfigSanitizer,
27
+ BlueprintGenerator,
28
+ )
29
+ import library.custom_train_functions as custom_train_functions
30
+ from library.custom_train_functions import (
31
+ apply_snr_weight,
32
+ get_weighted_text_embeddings,
33
+ prepare_scheduler_for_custom_training,
34
+ pyramid_noise_like,
35
+ apply_noise_offset,
36
+ scale_v_prediction_loss_like_noise_prediction,
37
+ apply_debiased_estimation,
38
+ apply_masked_loss,
39
+ )
40
+ from library.utils import setup_logging, add_logging_arguments
41
+
42
+ setup_logging()
43
+ import logging
44
+
45
+ logger = logging.getLogger(__name__)
46
+
47
+ # perlin_noise,
48
+
49
+
50
+ def train(args):
51
+ train_util.verify_training_args(args)
52
+ train_util.prepare_dataset_args(args, False)
53
+ deepspeed_utils.prepare_deepspeed_args(args)
54
+ setup_logging(args, reset=True)
55
+
56
+ cache_latents = args.cache_latents
57
+
58
+ if args.seed is not None:
59
+ set_seed(args.seed) # 乱数系列を初期化する
60
+
61
+ tokenizer = train_util.load_tokenizer(args)
62
+
63
+ # データセットを準備する
64
+ if args.dataset_class is None:
65
+ blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, False, args.masked_loss, True))
66
+ if args.dataset_config is not None:
67
+ logger.info(f"Load dataset config from {args.dataset_config}")
68
+ user_config = config_util.load_user_config(args.dataset_config)
69
+ ignored = ["train_data_dir", "reg_data_dir"]
70
+ if any(getattr(args, attr) is not None for attr in ignored):
71
+ logger.warning(
72
+ "ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
73
+ ", ".join(ignored)
74
+ )
75
+ )
76
+ else:
77
+ user_config = {
78
+ "datasets": [
79
+ {"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(args.train_data_dir, args.reg_data_dir)}
80
+ ]
81
+ }
82
+
83
+ blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
84
+ train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
85
+ else:
86
+ train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizer)
87
+
88
+ current_epoch = Value("i", 0)
89
+ current_step = Value("i", 0)
90
+ ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
91
+ collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
92
+
93
+ if args.no_token_padding:
94
+ train_dataset_group.disable_token_padding()
95
+
96
+ if args.debug_dataset:
97
+ train_util.debug_dataset(train_dataset_group)
98
+ return
99
+
100
+ if cache_latents:
101
+ assert (
102
+ train_dataset_group.is_latent_cacheable()
103
+ ), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
104
+
105
+ # acceleratorを準備する
106
+ logger.info("prepare accelerator")
107
+
108
+ if args.gradient_accumulation_steps > 1:
109
+ logger.warning(
110
+ f"gradient_accumulation_steps is {args.gradient_accumulation_steps}. accelerate does not support gradient_accumulation_steps when training multiple models (U-Net and Text Encoder), so something might be wrong"
111
+ )
112
+ logger.warning(
113
+ f"gradient_accumulation_stepsが{args.gradient_accumulation_steps}に設定されています。accelerateは複数モデル(U-NetおよびText Encoder)の学習時にgradient_accumulation_stepsをサポートしていないため結果は未知数です"
114
+ )
115
+
116
+ accelerator = train_util.prepare_accelerator(args)
117
+
118
+ # mixed precisionに対応した型を用意しておき適宜castする
119
+ weight_dtype, save_dtype = train_util.prepare_dtype(args)
120
+ vae_dtype = torch.float32 if args.no_half_vae else weight_dtype
121
+
122
+ # モデルを読み込む
123
+ text_encoder, vae, unet, load_stable_diffusion_format = train_util.load_target_model(args, weight_dtype, accelerator)
124
+
125
+ # verify load/save model formats
126
+ if load_stable_diffusion_format:
127
+ src_stable_diffusion_ckpt = args.pretrained_model_name_or_path
128
+ src_diffusers_model_path = None
129
+ else:
130
+ src_stable_diffusion_ckpt = None
131
+ src_diffusers_model_path = args.pretrained_model_name_or_path
132
+
133
+ if args.save_model_as is None:
134
+ save_stable_diffusion_format = load_stable_diffusion_format
135
+ use_safetensors = args.use_safetensors
136
+ else:
137
+ save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors"
138
+ use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower())
139
+
140
+ # モデルに xformers とか memory efficient attention を組み込む
141
+ train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa)
142
+
143
+ # 学習を準備する
144
+ if cache_latents:
145
+ vae.to(accelerator.device, dtype=vae_dtype)
146
+ vae.requires_grad_(False)
147
+ vae.eval()
148
+ with torch.no_grad():
149
+ train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process)
150
+ vae.to("cpu")
151
+ clean_memory_on_device(accelerator.device)
152
+
153
+ accelerator.wait_for_everyone()
154
+
155
+ # 学習を準備する:モデルを適切な状態にする
156
+ train_text_encoder = args.stop_text_encoder_training is None or args.stop_text_encoder_training >= 0
157
+ unet.requires_grad_(True) # 念のため追加
158
+ text_encoder.requires_grad_(train_text_encoder)
159
+ if not train_text_encoder:
160
+ accelerator.print("Text Encoder is not trained.")
161
+
162
+ if args.gradient_checkpointing:
163
+ unet.enable_gradient_checkpointing()
164
+ text_encoder.gradient_checkpointing_enable()
165
+
166
+ if not cache_latents:
167
+ vae.requires_grad_(False)
168
+ vae.eval()
169
+ vae.to(accelerator.device, dtype=weight_dtype)
170
+
171
+ # 学習に必要なクラスを準備する
172
+ accelerator.print("prepare optimizer, data loader etc.")
173
+ if train_text_encoder:
174
+ if args.learning_rate_te is None:
175
+ # wightout list, adamw8bit is crashed
176
+ trainable_params = list(itertools.chain(unet.parameters(), text_encoder.parameters()))
177
+ else:
178
+ trainable_params = [
179
+ {"params": list(unet.parameters()), "lr": args.learning_rate},
180
+ {"params": list(text_encoder.parameters()), "lr": args.learning_rate_te},
181
+ ]
182
+ else:
183
+ trainable_params = unet.parameters()
184
+
185
+ _, _, optimizer = train_util.get_optimizer(args, trainable_params)
186
+
187
+ # dataloaderを準備する
188
+ # DataLoaderのプロセス数:0 は persistent_workers が使えないので注意
189
+ n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
190
+ train_dataloader = torch.utils.data.DataLoader(
191
+ train_dataset_group,
192
+ batch_size=1,
193
+ shuffle=True,
194
+ collate_fn=collator,
195
+ num_workers=n_workers,
196
+ persistent_workers=args.persistent_data_loader_workers,
197
+ )
198
+
199
+ # 学習ステップ数を計算する
200
+ if args.max_train_epochs is not None:
201
+ args.max_train_steps = args.max_train_epochs * math.ceil(
202
+ len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
203
+ )
204
+ accelerator.print(
205
+ f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}"
206
+ )
207
+
208
+ # データセット側にも学習ステップを送信
209
+ train_dataset_group.set_max_train_steps(args.max_train_steps)
210
+
211
+ if args.stop_text_encoder_training is None:
212
+ args.stop_text_encoder_training = args.max_train_steps + 1 # do not stop until end
213
+
214
+ # lr schedulerを用意する TODO gradient_accumulation_stepsの扱いが何かおかしいかもしれない。後で確認する
215
+ lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
216
+
217
+ # 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする
218
+ if args.full_fp16:
219
+ assert (
220
+ args.mixed_precision == "fp16"
221
+ ), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
222
+ accelerator.print("enable full fp16 training.")
223
+ unet.to(weight_dtype)
224
+ text_encoder.to(weight_dtype)
225
+
226
+ # acceleratorがなんかよろしくやってくれるらしい
227
+ if args.deepspeed:
228
+ if args.train_text_encoder:
229
+ ds_model = deepspeed_utils.prepare_deepspeed_model(args, unet=unet, text_encoder=text_encoder)
230
+ else:
231
+ ds_model = deepspeed_utils.prepare_deepspeed_model(args, unet=unet)
232
+ ds_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
233
+ ds_model, optimizer, train_dataloader, lr_scheduler
234
+ )
235
+ training_models = [ds_model]
236
+
237
+ else:
238
+ if train_text_encoder:
239
+ unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
240
+ unet, text_encoder, optimizer, train_dataloader, lr_scheduler
241
+ )
242
+ training_models = [unet, text_encoder]
243
+ else:
244
+ unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler)
245
+ training_models = [unet]
246
+
247
+ if not train_text_encoder:
248
+ text_encoder.to(accelerator.device, dtype=weight_dtype) # to avoid 'cpu' vs 'cuda' error
249
+
250
+ # 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
251
+ if args.full_fp16:
252
+ train_util.patch_accelerator_for_fp16_training(accelerator)
253
+
254
+ # resumeする
255
+ train_util.resume_from_local_or_hf_if_specified(accelerator, args)
256
+
257
+ # epoch数を計算する
258
+ num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
259
+ num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
260
+ if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
261
+ args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
262
+
263
+ # 学習する
264
+ total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
265
+ accelerator.print("running training / 学習開始")
266
+ accelerator.print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
267
+ accelerator.print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
268
+ accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
269
+ accelerator.print(f" num epochs / epoch数: {num_train_epochs}")
270
+ accelerator.print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
271
+ accelerator.print(
272
+ f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}"
273
+ )
274
+ accelerator.print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
275
+ accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
276
+
277
+ progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
278
+ global_step = 0
279
+
280
+ noise_scheduler = DDPMScheduler(
281
+ beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
282
+ )
283
+ prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
284
+ if args.zero_terminal_snr:
285
+ custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler)
286
+
287
+ if accelerator.is_main_process:
288
+ init_kwargs = {}
289
+ if args.wandb_run_name:
290
+ init_kwargs["wandb"] = {"name": args.wandb_run_name}
291
+ if args.log_tracker_config is not None:
292
+ init_kwargs = toml.load(args.log_tracker_config)
293
+ accelerator.init_trackers("dreambooth" if args.log_tracker_name is None else args.log_tracker_name, init_kwargs=init_kwargs)
294
+
295
+ # For --sample_at_first
296
+ train_util.sample_images(accelerator, args, 0, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
297
+
298
+ loss_recorder = train_util.LossRecorder()
299
+ for epoch in range(num_train_epochs):
300
+ accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
301
+ current_epoch.value = epoch + 1
302
+
303
+ # 指定したステップ数までText Encoderを学習する:epoch最初の状態
304
+ unet.train()
305
+ # train==True is required to enable gradient_checkpointing
306
+ if args.gradient_checkpointing or global_step < args.stop_text_encoder_training:
307
+ text_encoder.train()
308
+
309
+ for step, batch in enumerate(train_dataloader):
310
+ current_step.value = global_step
311
+ # 指定したステップ数でText Encoderの学習を止める
312
+ if global_step == args.stop_text_encoder_training:
313
+ accelerator.print(f"stop text encoder training at step {global_step}")
314
+ if not args.gradient_checkpointing:
315
+ text_encoder.train(False)
316
+ text_encoder.requires_grad_(False)
317
+ if len(training_models) == 2:
318
+ training_models = training_models[0] # remove text_encoder from training_models
319
+
320
+ with accelerator.accumulate(*training_models):
321
+ with torch.no_grad():
322
+ # latentに変換
323
+ if cache_latents:
324
+ latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype)
325
+ else:
326
+ latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
327
+ latents = latents * 0.18215
328
+ b_size = latents.shape[0]
329
+
330
+ # Get the text embedding for conditioning
331
+ with torch.set_grad_enabled(global_step < args.stop_text_encoder_training):
332
+ if args.weighted_captions:
333
+ encoder_hidden_states = get_weighted_text_embeddings(
334
+ tokenizer,
335
+ text_encoder,
336
+ batch["captions"],
337
+ accelerator.device,
338
+ args.max_token_length // 75 if args.max_token_length else 1,
339
+ clip_skip=args.clip_skip,
340
+ )
341
+ else:
342
+ input_ids = batch["input_ids"].to(accelerator.device)
343
+ encoder_hidden_states = train_util.get_hidden_states(
344
+ args, input_ids, tokenizer, text_encoder, None if not args.full_fp16 else weight_dtype
345
+ )
346
+
347
+ # Sample noise, sample a random timestep for each image, and add noise to the latents,
348
+ # with noise offset and/or multires noise if specified
349
+ noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps(args, noise_scheduler, latents)
350
+
351
+ # Predict the noise residual
352
+ with accelerator.autocast():
353
+ noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
354
+
355
+ if args.v_parameterization:
356
+ # v-parameterization training
357
+ target = noise_scheduler.get_velocity(latents, noise, timesteps)
358
+ else:
359
+ target = noise
360
+
361
+ loss = train_util.conditional_loss(noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c)
362
+ if args.masked_loss:
363
+ loss = apply_masked_loss(loss, batch)
364
+ loss = loss.mean([1, 2, 3])
365
+
366
+ loss_weights = batch["loss_weights"] # 各sampleごとのweight
367
+ loss = loss * loss_weights
368
+
369
+ if args.min_snr_gamma:
370
+ loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization)
371
+ if args.scale_v_pred_loss_like_noise_pred:
372
+ loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler)
373
+ if args.debiased_estimation_loss:
374
+ loss = apply_debiased_estimation(loss, timesteps, noise_scheduler)
375
+
376
+ loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
377
+
378
+ accelerator.backward(loss)
379
+ if accelerator.sync_gradients and args.max_grad_norm != 0.0:
380
+ if train_text_encoder:
381
+ params_to_clip = itertools.chain(unet.parameters(), text_encoder.parameters())
382
+ else:
383
+ params_to_clip = unet.parameters()
384
+ accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
385
+
386
+ optimizer.step()
387
+ lr_scheduler.step()
388
+ optimizer.zero_grad(set_to_none=True)
389
+
390
+ # Checks if the accelerator has performed an optimization step behind the scenes
391
+ if accelerator.sync_gradients:
392
+ progress_bar.update(1)
393
+ global_step += 1
394
+
395
+ train_util.sample_images(
396
+ accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet
397
+ )
398
+
399
+ # 指定ステップごとにモデルを保存
400
+ if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
401
+ accelerator.wait_for_everyone()
402
+ if accelerator.is_main_process:
403
+ src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
404
+ train_util.save_sd_model_on_epoch_end_or_stepwise(
405
+ args,
406
+ False,
407
+ accelerator,
408
+ src_path,
409
+ save_stable_diffusion_format,
410
+ use_safetensors,
411
+ save_dtype,
412
+ epoch,
413
+ num_train_epochs,
414
+ global_step,
415
+ accelerator.unwrap_model(text_encoder),
416
+ accelerator.unwrap_model(unet),
417
+ vae,
418
+ )
419
+
420
+ current_loss = loss.detach().item()
421
+ if args.logging_dir is not None:
422
+ logs = {"loss": current_loss}
423
+ train_util.append_lr_to_logs(logs, lr_scheduler, args.optimizer_type, including_unet=True)
424
+ accelerator.log(logs, step=global_step)
425
+
426
+ loss_recorder.add(epoch=epoch, step=step, loss=current_loss)
427
+ avr_loss: float = loss_recorder.moving_average
428
+ logs = {"avr_loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
429
+ progress_bar.set_postfix(**logs)
430
+
431
+ if global_step >= args.max_train_steps:
432
+ break
433
+
434
+ if args.logging_dir is not None:
435
+ logs = {"loss/epoch": loss_recorder.moving_average}
436
+ accelerator.log(logs, step=epoch + 1)
437
+
438
+ accelerator.wait_for_everyone()
439
+
440
+ if args.save_every_n_epochs is not None:
441
+ if accelerator.is_main_process:
442
+ # checking for saving is in util
443
+ src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
444
+ train_util.save_sd_model_on_epoch_end_or_stepwise(
445
+ args,
446
+ True,
447
+ accelerator,
448
+ src_path,
449
+ save_stable_diffusion_format,
450
+ use_safetensors,
451
+ save_dtype,
452
+ epoch,
453
+ num_train_epochs,
454
+ global_step,
455
+ accelerator.unwrap_model(text_encoder),
456
+ accelerator.unwrap_model(unet),
457
+ vae,
458
+ )
459
+
460
+ train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
461
+
462
+ is_main_process = accelerator.is_main_process
463
+ if is_main_process:
464
+ unet = accelerator.unwrap_model(unet)
465
+ text_encoder = accelerator.unwrap_model(text_encoder)
466
+
467
+ accelerator.end_training()
468
+
469
+ if is_main_process and (args.save_state or args.save_state_on_train_end):
470
+ train_util.save_state_on_train_end(args, accelerator)
471
+
472
+ del accelerator # この後メモリを使うのでこれは消す
473
+
474
+ if is_main_process:
475
+ src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
476
+ train_util.save_sd_model_on_train_end(
477
+ args, src_path, save_stable_diffusion_format, use_safetensors, save_dtype, epoch, global_step, text_encoder, unet, vae
478
+ )
479
+ logger.info("model saved.")
480
+
481
+
482
+ def setup_parser() -> argparse.ArgumentParser:
483
+ parser = argparse.ArgumentParser()
484
+
485
+ add_logging_arguments(parser)
486
+ train_util.add_sd_models_arguments(parser)
487
+ train_util.add_dataset_arguments(parser, True, False, True)
488
+ train_util.add_training_arguments(parser, True)
489
+ train_util.add_masked_loss_arguments(parser)
490
+ deepspeed_utils.add_deepspeed_arguments(parser)
491
+ train_util.add_sd_saving_arguments(parser)
492
+ train_util.add_optimizer_arguments(parser)
493
+ config_util.add_config_arguments(parser)
494
+ custom_train_functions.add_custom_train_arguments(parser)
495
+
496
+ parser.add_argument(
497
+ "--learning_rate_te",
498
+ type=float,
499
+ default=None,
500
+ help="learning rate for text encoder, default is same as unet / Text Encoderの学習率、デフォルトはunetと同じ",
501
+ )
502
+ parser.add_argument(
503
+ "--no_token_padding",
504
+ action="store_true",
505
+ help="disable token padding (same as Diffuser's DreamBooth) / トークンのpaddingを無効にする(Diffusers版DreamBoothと同じ動作)",
506
+ )
507
+ parser.add_argument(
508
+ "--stop_text_encoder_training",
509
+ type=int,
510
+ default=None,
511
+ help="steps to stop text encoder training, -1 for no training / Text Encoderの学習を止めるステップ数、-1で最初から学習しない",
512
+ )
513
+ parser.add_argument(
514
+ "--no_half_vae",
515
+ action="store_true",
516
+ help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う",
517
+ )
518
+
519
+ return parser
520
+
521
+
522
+ if __name__ == "__main__":
523
+ parser = setup_parser()
524
+
525
+ args = parser.parse_args()
526
+ train_util.verify_command_line_training_args(args)
527
+ args = train_util.read_config_from_file(args, parser)
528
+
529
+ train(args)