Upload lora-scripts/sd-scripts/train_textual_inversion.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/train_textual_inversion.py
ADDED
@@ -0,0 +1,813 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
from multiprocessing import Value
|
5 |
+
import toml
|
6 |
+
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from library.device_utils import init_ipex, clean_memory_on_device
|
11 |
+
|
12 |
+
|
13 |
+
init_ipex()
|
14 |
+
|
15 |
+
from accelerate.utils import set_seed
|
16 |
+
from diffusers import DDPMScheduler
|
17 |
+
from transformers import CLIPTokenizer
|
18 |
+
from library import deepspeed_utils, model_util
|
19 |
+
|
20 |
+
import library.train_util as train_util
|
21 |
+
import library.huggingface_util as huggingface_util
|
22 |
+
import library.config_util as config_util
|
23 |
+
from library.config_util import (
|
24 |
+
ConfigSanitizer,
|
25 |
+
BlueprintGenerator,
|
26 |
+
)
|
27 |
+
import library.custom_train_functions as custom_train_functions
|
28 |
+
from library.custom_train_functions import (
|
29 |
+
apply_snr_weight,
|
30 |
+
prepare_scheduler_for_custom_training,
|
31 |
+
scale_v_prediction_loss_like_noise_prediction,
|
32 |
+
add_v_prediction_like_loss,
|
33 |
+
apply_debiased_estimation,
|
34 |
+
apply_masked_loss,
|
35 |
+
)
|
36 |
+
from library.utils import setup_logging, add_logging_arguments
|
37 |
+
|
38 |
+
setup_logging()
|
39 |
+
import logging
|
40 |
+
|
41 |
+
logger = logging.getLogger(__name__)
|
42 |
+
|
43 |
+
imagenet_templates_small = [
|
44 |
+
"a photo of a {}",
|
45 |
+
"a rendering of a {}",
|
46 |
+
"a cropped photo of the {}",
|
47 |
+
"the photo of a {}",
|
48 |
+
"a photo of a clean {}",
|
49 |
+
"a photo of a dirty {}",
|
50 |
+
"a dark photo of the {}",
|
51 |
+
"a photo of my {}",
|
52 |
+
"a photo of the cool {}",
|
53 |
+
"a close-up photo of a {}",
|
54 |
+
"a bright photo of the {}",
|
55 |
+
"a cropped photo of a {}",
|
56 |
+
"a photo of the {}",
|
57 |
+
"a good photo of the {}",
|
58 |
+
"a photo of one {}",
|
59 |
+
"a close-up photo of the {}",
|
60 |
+
"a rendition of the {}",
|
61 |
+
"a photo of the clean {}",
|
62 |
+
"a rendition of a {}",
|
63 |
+
"a photo of a nice {}",
|
64 |
+
"a good photo of a {}",
|
65 |
+
"a photo of the nice {}",
|
66 |
+
"a photo of the small {}",
|
67 |
+
"a photo of the weird {}",
|
68 |
+
"a photo of the large {}",
|
69 |
+
"a photo of a cool {}",
|
70 |
+
"a photo of a small {}",
|
71 |
+
]
|
72 |
+
|
73 |
+
imagenet_style_templates_small = [
|
74 |
+
"a painting in the style of {}",
|
75 |
+
"a rendering in the style of {}",
|
76 |
+
"a cropped painting in the style of {}",
|
77 |
+
"the painting in the style of {}",
|
78 |
+
"a clean painting in the style of {}",
|
79 |
+
"a dirty painting in the style of {}",
|
80 |
+
"a dark painting in the style of {}",
|
81 |
+
"a picture in the style of {}",
|
82 |
+
"a cool painting in the style of {}",
|
83 |
+
"a close-up painting in the style of {}",
|
84 |
+
"a bright painting in the style of {}",
|
85 |
+
"a cropped painting in the style of {}",
|
86 |
+
"a good painting in the style of {}",
|
87 |
+
"a close-up painting in the style of {}",
|
88 |
+
"a rendition in the style of {}",
|
89 |
+
"a nice painting in the style of {}",
|
90 |
+
"a small painting in the style of {}",
|
91 |
+
"a weird painting in the style of {}",
|
92 |
+
"a large painting in the style of {}",
|
93 |
+
]
|
94 |
+
|
95 |
+
|
96 |
+
class TextualInversionTrainer:
|
97 |
+
def __init__(self):
|
98 |
+
self.vae_scale_factor = 0.18215
|
99 |
+
self.is_sdxl = False
|
100 |
+
|
101 |
+
def assert_extra_args(self, args, train_dataset_group):
|
102 |
+
pass
|
103 |
+
|
104 |
+
def load_target_model(self, args, weight_dtype, accelerator):
|
105 |
+
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype, accelerator)
|
106 |
+
return model_util.get_model_version_str_for_sd1_sd2(args.v2, args.v_parameterization), text_encoder, vae, unet
|
107 |
+
|
108 |
+
def load_tokenizer(self, args):
|
109 |
+
tokenizer = train_util.load_tokenizer(args)
|
110 |
+
return tokenizer
|
111 |
+
|
112 |
+
def assert_token_string(self, token_string, tokenizers: CLIPTokenizer):
|
113 |
+
pass
|
114 |
+
|
115 |
+
def get_text_cond(self, args, accelerator, batch, tokenizers, text_encoders, weight_dtype):
|
116 |
+
with torch.enable_grad():
|
117 |
+
input_ids = batch["input_ids"].to(accelerator.device)
|
118 |
+
encoder_hidden_states = train_util.get_hidden_states(args, input_ids, tokenizers[0], text_encoders[0], None)
|
119 |
+
return encoder_hidden_states
|
120 |
+
|
121 |
+
def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype):
|
122 |
+
noise_pred = unet(noisy_latents, timesteps, text_conds).sample
|
123 |
+
return noise_pred
|
124 |
+
|
125 |
+
def sample_images(self, accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet, prompt_replacement):
|
126 |
+
train_util.sample_images(
|
127 |
+
accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet, prompt_replacement
|
128 |
+
)
|
129 |
+
|
130 |
+
def save_weights(self, file, updated_embs, save_dtype, metadata):
|
131 |
+
state_dict = {"emb_params": updated_embs[0]}
|
132 |
+
|
133 |
+
if save_dtype is not None:
|
134 |
+
for key in list(state_dict.keys()):
|
135 |
+
v = state_dict[key]
|
136 |
+
v = v.detach().clone().to("cpu").to(save_dtype)
|
137 |
+
state_dict[key] = v
|
138 |
+
|
139 |
+
if os.path.splitext(file)[1] == ".safetensors":
|
140 |
+
from safetensors.torch import save_file
|
141 |
+
|
142 |
+
save_file(state_dict, file, metadata)
|
143 |
+
else:
|
144 |
+
torch.save(state_dict, file) # can be loaded in Web UI
|
145 |
+
|
146 |
+
def load_weights(self, file):
|
147 |
+
if os.path.splitext(file)[1] == ".safetensors":
|
148 |
+
from safetensors.torch import load_file
|
149 |
+
|
150 |
+
data = load_file(file)
|
151 |
+
else:
|
152 |
+
# compatible to Web UI's file format
|
153 |
+
data = torch.load(file, map_location="cpu")
|
154 |
+
if type(data) != dict:
|
155 |
+
raise ValueError(f"weight file is not dict / 重みファイルがdict形式ではありません: {file}")
|
156 |
+
|
157 |
+
if "string_to_param" in data: # textual inversion embeddings
|
158 |
+
data = data["string_to_param"]
|
159 |
+
if hasattr(data, "_parameters"): # support old PyTorch?
|
160 |
+
data = getattr(data, "_parameters")
|
161 |
+
|
162 |
+
emb = next(iter(data.values()))
|
163 |
+
if type(emb) != torch.Tensor:
|
164 |
+
raise ValueError(f"weight file does not contains Tensor / 重みファイルのデータがTensorではありません: {file}")
|
165 |
+
|
166 |
+
if len(emb.size()) == 1:
|
167 |
+
emb = emb.unsqueeze(0)
|
168 |
+
|
169 |
+
return [emb]
|
170 |
+
|
171 |
+
def train(self, args):
|
172 |
+
if args.output_name is None:
|
173 |
+
args.output_name = args.token_string
|
174 |
+
use_template = args.use_object_template or args.use_style_template
|
175 |
+
|
176 |
+
train_util.verify_training_args(args)
|
177 |
+
train_util.prepare_dataset_args(args, True)
|
178 |
+
setup_logging(args, reset=True)
|
179 |
+
|
180 |
+
cache_latents = args.cache_latents
|
181 |
+
|
182 |
+
if args.seed is not None:
|
183 |
+
set_seed(args.seed)
|
184 |
+
|
185 |
+
tokenizer_or_list = self.load_tokenizer(args) # list of tokenizer or tokenizer
|
186 |
+
tokenizers = tokenizer_or_list if isinstance(tokenizer_or_list, list) else [tokenizer_or_list]
|
187 |
+
|
188 |
+
# acceleratorを準備する
|
189 |
+
logger.info("prepare accelerator")
|
190 |
+
accelerator = train_util.prepare_accelerator(args)
|
191 |
+
|
192 |
+
# mixed precisionに対応した型を用意しておき適宜castする
|
193 |
+
weight_dtype, save_dtype = train_util.prepare_dtype(args)
|
194 |
+
vae_dtype = torch.float32 if args.no_half_vae else weight_dtype
|
195 |
+
|
196 |
+
# モデルを読み込む
|
197 |
+
model_version, text_encoder_or_list, vae, unet = self.load_target_model(args, weight_dtype, accelerator)
|
198 |
+
text_encoders = [text_encoder_or_list] if not isinstance(text_encoder_or_list, list) else text_encoder_or_list
|
199 |
+
|
200 |
+
if len(text_encoders) > 1 and args.gradient_accumulation_steps > 1:
|
201 |
+
accelerator.print(
|
202 |
+
"accelerate doesn't seem to support gradient_accumulation_steps for multiple models (text encoders) / "
|
203 |
+
+ "accelerateでは複数のモデル(テキストエンコーダー)のgradient_accumulation_stepsはサポートされていないようです"
|
204 |
+
)
|
205 |
+
|
206 |
+
# Convert the init_word to token_id
|
207 |
+
init_token_ids_list = []
|
208 |
+
if args.init_word is not None:
|
209 |
+
for i, tokenizer in enumerate(tokenizers):
|
210 |
+
init_token_ids = tokenizer.encode(args.init_word, add_special_tokens=False)
|
211 |
+
if len(init_token_ids) > 1 and len(init_token_ids) != args.num_vectors_per_token:
|
212 |
+
accelerator.print(
|
213 |
+
f"token length for init words is not same to num_vectors_per_token, init words is repeated or truncated / "
|
214 |
+
+ f"初期化単語のトークン長がnum_vectors_per_tokenと合わないため、繰り返しまたは切り捨てが発生します: tokenizer {i+1}, length {len(init_token_ids)}"
|
215 |
+
)
|
216 |
+
init_token_ids_list.append(init_token_ids)
|
217 |
+
else:
|
218 |
+
init_token_ids_list = [None] * len(tokenizers)
|
219 |
+
|
220 |
+
# tokenizerに新しい単語を追加する。追加する単語の数はnum_vectors_per_token
|
221 |
+
# token_stringが hoge の場合、"hoge", "hoge1", "hoge2", ... が追加される
|
222 |
+
# add new word to tokenizer, count is num_vectors_per_token
|
223 |
+
# if token_string is hoge, "hoge", "hoge1", "hoge2", ... are added
|
224 |
+
|
225 |
+
self.assert_token_string(args.token_string, tokenizers)
|
226 |
+
|
227 |
+
token_strings = [args.token_string] + [f"{args.token_string}{i+1}" for i in range(args.num_vectors_per_token - 1)]
|
228 |
+
token_ids_list = []
|
229 |
+
token_embeds_list = []
|
230 |
+
for i, (tokenizer, text_encoder, init_token_ids) in enumerate(zip(tokenizers, text_encoders, init_token_ids_list)):
|
231 |
+
num_added_tokens = tokenizer.add_tokens(token_strings)
|
232 |
+
assert (
|
233 |
+
num_added_tokens == args.num_vectors_per_token
|
234 |
+
), f"tokenizer has same word to token string. please use another one / 指定したargs.token_stringは既に存在します。別の単語を使ってください: tokenizer {i+1}, {args.token_string}"
|
235 |
+
|
236 |
+
token_ids = tokenizer.convert_tokens_to_ids(token_strings)
|
237 |
+
accelerator.print(f"tokens are added for tokenizer {i+1}: {token_ids}")
|
238 |
+
assert (
|
239 |
+
min(token_ids) == token_ids[0] and token_ids[-1] == token_ids[0] + len(token_ids) - 1
|
240 |
+
), f"token ids is not ordered : tokenizer {i+1}, {token_ids}"
|
241 |
+
assert (
|
242 |
+
len(tokenizer) - 1 == token_ids[-1]
|
243 |
+
), f"token ids is not end of tokenize: tokenizer {i+1}, {token_ids}, {len(tokenizer)}"
|
244 |
+
token_ids_list.append(token_ids)
|
245 |
+
|
246 |
+
# Resize the token embeddings as we are adding new special tokens to the tokenizer
|
247 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
248 |
+
|
249 |
+
# Initialise the newly added placeholder token with the embeddings of the initializer token
|
250 |
+
token_embeds = text_encoder.get_input_embeddings().weight.data
|
251 |
+
if init_token_ids is not None:
|
252 |
+
for i, token_id in enumerate(token_ids):
|
253 |
+
token_embeds[token_id] = token_embeds[init_token_ids[i % len(init_token_ids)]]
|
254 |
+
# accelerator.print(token_id, token_embeds[token_id].mean(), token_embeds[token_id].min())
|
255 |
+
token_embeds_list.append(token_embeds)
|
256 |
+
|
257 |
+
# load weights
|
258 |
+
if args.weights is not None:
|
259 |
+
embeddings_list = self.load_weights(args.weights)
|
260 |
+
assert len(token_ids) == len(
|
261 |
+
embeddings_list[0]
|
262 |
+
), f"num_vectors_per_token is mismatch for weights / 指定した重みとnum_vectors_per_tokenの値が異なります: {len(embeddings)}"
|
263 |
+
# accelerator.print(token_ids, embeddings.size())
|
264 |
+
for token_ids, embeddings, token_embeds in zip(token_ids_list, embeddings_list, token_embeds_list):
|
265 |
+
for token_id, embedding in zip(token_ids, embeddings):
|
266 |
+
token_embeds[token_id] = embedding
|
267 |
+
# accelerator.print(token_id, token_embeds[token_id].mean(), token_embeds[token_id].min())
|
268 |
+
accelerator.print(f"weighs loaded")
|
269 |
+
|
270 |
+
accelerator.print(f"create embeddings for {args.num_vectors_per_token} tokens, for {args.token_string}")
|
271 |
+
|
272 |
+
# データセットを準備する
|
273 |
+
if args.dataset_class is None:
|
274 |
+
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, args.masked_loss, False))
|
275 |
+
if args.dataset_config is not None:
|
276 |
+
accelerator.print(f"Load dataset config from {args.dataset_config}")
|
277 |
+
user_config = config_util.load_user_config(args.dataset_config)
|
278 |
+
ignored = ["train_data_dir", "reg_data_dir", "in_json"]
|
279 |
+
if any(getattr(args, attr) is not None for attr in ignored):
|
280 |
+
accelerator.print(
|
281 |
+
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
|
282 |
+
", ".join(ignored)
|
283 |
+
)
|
284 |
+
)
|
285 |
+
else:
|
286 |
+
use_dreambooth_method = args.in_json is None
|
287 |
+
if use_dreambooth_method:
|
288 |
+
accelerator.print("Use DreamBooth method.")
|
289 |
+
user_config = {
|
290 |
+
"datasets": [
|
291 |
+
{
|
292 |
+
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(
|
293 |
+
args.train_data_dir, args.reg_data_dir
|
294 |
+
)
|
295 |
+
}
|
296 |
+
]
|
297 |
+
}
|
298 |
+
else:
|
299 |
+
logger.info("Train with captions.")
|
300 |
+
user_config = {
|
301 |
+
"datasets": [
|
302 |
+
{
|
303 |
+
"subsets": [
|
304 |
+
{
|
305 |
+
"image_dir": args.train_data_dir,
|
306 |
+
"metadata_file": args.in_json,
|
307 |
+
}
|
308 |
+
]
|
309 |
+
}
|
310 |
+
]
|
311 |
+
}
|
312 |
+
|
313 |
+
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer_or_list)
|
314 |
+
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
315 |
+
else:
|
316 |
+
train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizer_or_list)
|
317 |
+
|
318 |
+
self.assert_extra_args(args, train_dataset_group)
|
319 |
+
|
320 |
+
current_epoch = Value("i", 0)
|
321 |
+
current_step = Value("i", 0)
|
322 |
+
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
|
323 |
+
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
|
324 |
+
|
325 |
+
# make captions: tokenstring tokenstring1 tokenstring2 ...tokenstringn という文字列に書き換える超乱暴な実装
|
326 |
+
if use_template:
|
327 |
+
accelerator.print(f"use template for training captions. is object: {args.use_object_template}")
|
328 |
+
templates = imagenet_templates_small if args.use_object_template else imagenet_style_templates_small
|
329 |
+
replace_to = " ".join(token_strings)
|
330 |
+
captions = []
|
331 |
+
for tmpl in templates:
|
332 |
+
captions.append(tmpl.format(replace_to))
|
333 |
+
train_dataset_group.add_replacement("", captions)
|
334 |
+
|
335 |
+
# サンプル生成用
|
336 |
+
if args.num_vectors_per_token > 1:
|
337 |
+
prompt_replacement = (args.token_string, replace_to)
|
338 |
+
else:
|
339 |
+
prompt_replacement = None
|
340 |
+
else:
|
341 |
+
# サンプル生成用
|
342 |
+
if args.num_vectors_per_token > 1:
|
343 |
+
replace_to = " ".join(token_strings)
|
344 |
+
train_dataset_group.add_replacement(args.token_string, replace_to)
|
345 |
+
prompt_replacement = (args.token_string, replace_to)
|
346 |
+
else:
|
347 |
+
prompt_replacement = None
|
348 |
+
|
349 |
+
if args.debug_dataset:
|
350 |
+
train_util.debug_dataset(train_dataset_group, show_input_ids=True)
|
351 |
+
return
|
352 |
+
if len(train_dataset_group) == 0:
|
353 |
+
accelerator.print("No data found. Please verify arguments / 画像がありません。引数指定を確認してください")
|
354 |
+
return
|
355 |
+
|
356 |
+
if cache_latents:
|
357 |
+
assert (
|
358 |
+
train_dataset_group.is_latent_cacheable()
|
359 |
+
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
|
360 |
+
|
361 |
+
# モデルに xformers とか memory efficient attention を組み込む
|
362 |
+
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa)
|
363 |
+
if torch.__version__ >= "2.0.0": # PyTorch 2.0.0 以上対応のxformersなら以下が使える
|
364 |
+
vae.set_use_memory_efficient_attention_xformers(args.xformers)
|
365 |
+
|
366 |
+
# 学習を準備する
|
367 |
+
if cache_latents:
|
368 |
+
vae.to(accelerator.device, dtype=vae_dtype)
|
369 |
+
vae.requires_grad_(False)
|
370 |
+
vae.eval()
|
371 |
+
with torch.no_grad():
|
372 |
+
train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process)
|
373 |
+
vae.to("cpu")
|
374 |
+
clean_memory_on_device(accelerator.device)
|
375 |
+
|
376 |
+
accelerator.wait_for_everyone()
|
377 |
+
|
378 |
+
if args.gradient_checkpointing:
|
379 |
+
unet.enable_gradient_checkpointing()
|
380 |
+
for text_encoder in text_encoders:
|
381 |
+
text_encoder.gradient_checkpointing_enable()
|
382 |
+
|
383 |
+
# 学習に必要なクラスを準備する
|
384 |
+
accelerator.print("prepare optimizer, data loader etc.")
|
385 |
+
trainable_params = []
|
386 |
+
for text_encoder in text_encoders:
|
387 |
+
trainable_params += text_encoder.get_input_embeddings().parameters()
|
388 |
+
_, _, optimizer = train_util.get_optimizer(args, trainable_params)
|
389 |
+
|
390 |
+
# dataloaderを準備する
|
391 |
+
# DataLoaderのプロセス数:0 は persistent_workers が使えないので注意
|
392 |
+
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
|
393 |
+
train_dataloader = torch.utils.data.DataLoader(
|
394 |
+
train_dataset_group,
|
395 |
+
batch_size=1,
|
396 |
+
shuffle=True,
|
397 |
+
collate_fn=collator,
|
398 |
+
num_workers=n_workers,
|
399 |
+
persistent_workers=args.persistent_data_loader_workers,
|
400 |
+
)
|
401 |
+
|
402 |
+
# 学習ステップ数を計算する
|
403 |
+
if args.max_train_epochs is not None:
|
404 |
+
args.max_train_steps = args.max_train_epochs * math.ceil(
|
405 |
+
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
|
406 |
+
)
|
407 |
+
accelerator.print(
|
408 |
+
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}"
|
409 |
+
)
|
410 |
+
|
411 |
+
# データセット側にも学習ステップを送信
|
412 |
+
train_dataset_group.set_max_train_steps(args.max_train_steps)
|
413 |
+
|
414 |
+
# lr schedulerを用意する
|
415 |
+
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
|
416 |
+
|
417 |
+
# acceleratorがなんかよろしくやってくれるらしい
|
418 |
+
if len(text_encoders) == 1:
|
419 |
+
text_encoder_or_list, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
420 |
+
text_encoder_or_list, optimizer, train_dataloader, lr_scheduler
|
421 |
+
)
|
422 |
+
|
423 |
+
elif len(text_encoders) == 2:
|
424 |
+
text_encoder1, text_encoder2, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
425 |
+
text_encoders[0], text_encoders[1], optimizer, train_dataloader, lr_scheduler
|
426 |
+
)
|
427 |
+
|
428 |
+
text_encoder_or_list = text_encoders = [text_encoder1, text_encoder2]
|
429 |
+
|
430 |
+
else:
|
431 |
+
raise NotImplementedError()
|
432 |
+
|
433 |
+
index_no_updates_list = []
|
434 |
+
orig_embeds_params_list = []
|
435 |
+
for tokenizer, token_ids, text_encoder in zip(tokenizers, token_ids_list, text_encoders):
|
436 |
+
index_no_updates = torch.arange(len(tokenizer)) < token_ids[0]
|
437 |
+
index_no_updates_list.append(index_no_updates)
|
438 |
+
|
439 |
+
# accelerator.print(len(index_no_updates), torch.sum(index_no_updates))
|
440 |
+
orig_embeds_params = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight.data.detach().clone()
|
441 |
+
orig_embeds_params_list.append(orig_embeds_params)
|
442 |
+
|
443 |
+
# Freeze all parameters except for the token embeddings in text encoder
|
444 |
+
text_encoder.requires_grad_(True)
|
445 |
+
unwrapped_text_encoder = accelerator.unwrap_model(text_encoder)
|
446 |
+
unwrapped_text_encoder.text_model.encoder.requires_grad_(False)
|
447 |
+
unwrapped_text_encoder.text_model.final_layer_norm.requires_grad_(False)
|
448 |
+
unwrapped_text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
|
449 |
+
# text_encoder.text_model.embeddings.token_embedding.requires_grad_(True)
|
450 |
+
|
451 |
+
unet.requires_grad_(False)
|
452 |
+
unet.to(accelerator.device, dtype=weight_dtype)
|
453 |
+
if args.gradient_checkpointing: # according to TI example in Diffusers, train is required
|
454 |
+
# TODO U-Netをオリジナルに置き換えたのでいらないはずなので、後で確認して消す
|
455 |
+
unet.train()
|
456 |
+
else:
|
457 |
+
unet.eval()
|
458 |
+
|
459 |
+
if not cache_latents: # キャッシュしない場合はVAEを使うのでVAEを準備する
|
460 |
+
vae.requires_grad_(False)
|
461 |
+
vae.eval()
|
462 |
+
vae.to(accelerator.device, dtype=vae_dtype)
|
463 |
+
|
464 |
+
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
|
465 |
+
if args.full_fp16:
|
466 |
+
train_util.patch_accelerator_for_fp16_training(accelerator)
|
467 |
+
for text_encoder in text_encoders:
|
468 |
+
text_encoder.to(weight_dtype)
|
469 |
+
if args.full_bf16:
|
470 |
+
for text_encoder in text_encoders:
|
471 |
+
text_encoder.to(weight_dtype)
|
472 |
+
|
473 |
+
# resumeする
|
474 |
+
train_util.resume_from_local_or_hf_if_specified(accelerator, args)
|
475 |
+
|
476 |
+
# epoch数を計算する
|
477 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
478 |
+
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
479 |
+
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
|
480 |
+
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
|
481 |
+
|
482 |
+
# 学習する
|
483 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
484 |
+
accelerator.print("running training / 学習開始")
|
485 |
+
accelerator.print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
|
486 |
+
accelerator.print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
|
487 |
+
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
|
488 |
+
accelerator.print(f" num epochs / epoch数: {num_train_epochs}")
|
489 |
+
accelerator.print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
|
490 |
+
accelerator.print(
|
491 |
+
f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}"
|
492 |
+
)
|
493 |
+
accelerator.print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
|
494 |
+
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
|
495 |
+
|
496 |
+
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
|
497 |
+
global_step = 0
|
498 |
+
|
499 |
+
noise_scheduler = DDPMScheduler(
|
500 |
+
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
|
501 |
+
)
|
502 |
+
prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
|
503 |
+
if args.zero_terminal_snr:
|
504 |
+
custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler)
|
505 |
+
|
506 |
+
if accelerator.is_main_process:
|
507 |
+
init_kwargs = {}
|
508 |
+
if args.wandb_run_name:
|
509 |
+
init_kwargs["wandb"] = {"name": args.wandb_run_name}
|
510 |
+
if args.log_tracker_config is not None:
|
511 |
+
init_kwargs = toml.load(args.log_tracker_config)
|
512 |
+
accelerator.init_trackers(
|
513 |
+
"textual_inversion" if args.log_tracker_name is None else args.log_tracker_name, init_kwargs=init_kwargs
|
514 |
+
)
|
515 |
+
|
516 |
+
# function for saving/removing
|
517 |
+
def save_model(ckpt_name, embs_list, steps, epoch_no, force_sync_upload=False):
|
518 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
519 |
+
ckpt_file = os.path.join(args.output_dir, ckpt_name)
|
520 |
+
|
521 |
+
accelerator.print(f"\nsaving checkpoint: {ckpt_file}")
|
522 |
+
|
523 |
+
sai_metadata = train_util.get_sai_model_spec(None, args, self.is_sdxl, False, True)
|
524 |
+
|
525 |
+
self.save_weights(ckpt_file, embs_list, save_dtype, sai_metadata)
|
526 |
+
if args.huggingface_repo_id is not None:
|
527 |
+
huggingface_util.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload)
|
528 |
+
|
529 |
+
def remove_model(old_ckpt_name):
|
530 |
+
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
|
531 |
+
if os.path.exists(old_ckpt_file):
|
532 |
+
accelerator.print(f"removing old checkpoint: {old_ckpt_file}")
|
533 |
+
os.remove(old_ckpt_file)
|
534 |
+
|
535 |
+
# For --sample_at_first
|
536 |
+
self.sample_images(
|
537 |
+
accelerator,
|
538 |
+
args,
|
539 |
+
0,
|
540 |
+
global_step,
|
541 |
+
accelerator.device,
|
542 |
+
vae,
|
543 |
+
tokenizer_or_list,
|
544 |
+
text_encoder_or_list,
|
545 |
+
unet,
|
546 |
+
prompt_replacement,
|
547 |
+
)
|
548 |
+
|
549 |
+
# training loop
|
550 |
+
for epoch in range(num_train_epochs):
|
551 |
+
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
|
552 |
+
current_epoch.value = epoch + 1
|
553 |
+
|
554 |
+
for text_encoder in text_encoders:
|
555 |
+
text_encoder.train()
|
556 |
+
|
557 |
+
loss_total = 0
|
558 |
+
|
559 |
+
for step, batch in enumerate(train_dataloader):
|
560 |
+
current_step.value = global_step
|
561 |
+
with accelerator.accumulate(text_encoders[0]):
|
562 |
+
with torch.no_grad():
|
563 |
+
if "latents" in batch and batch["latents"] is not None:
|
564 |
+
latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype)
|
565 |
+
else:
|
566 |
+
# latentに変換
|
567 |
+
latents = vae.encode(batch["images"].to(dtype=vae_dtype)).latent_dist.sample().to(dtype=weight_dtype)
|
568 |
+
latents = latents * self.vae_scale_factor
|
569 |
+
|
570 |
+
# Get the text embedding for conditioning
|
571 |
+
text_encoder_conds = self.get_text_cond(args, accelerator, batch, tokenizers, text_encoders, weight_dtype)
|
572 |
+
|
573 |
+
# Sample noise, sample a random timestep for each image, and add noise to the latents,
|
574 |
+
# with noise offset and/or multires noise if specified
|
575 |
+
noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps(
|
576 |
+
args, noise_scheduler, latents
|
577 |
+
)
|
578 |
+
|
579 |
+
# Predict the noise residual
|
580 |
+
with accelerator.autocast():
|
581 |
+
noise_pred = self.call_unet(
|
582 |
+
args, accelerator, unet, noisy_latents, timesteps, text_encoder_conds, batch, weight_dtype
|
583 |
+
)
|
584 |
+
|
585 |
+
if args.v_parameterization:
|
586 |
+
# v-parameterization training
|
587 |
+
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
588 |
+
else:
|
589 |
+
target = noise
|
590 |
+
|
591 |
+
loss = train_util.conditional_loss(noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c)
|
592 |
+
if args.masked_loss:
|
593 |
+
loss = apply_masked_loss(loss, batch)
|
594 |
+
loss = loss.mean([1, 2, 3])
|
595 |
+
|
596 |
+
loss_weights = batch["loss_weights"] # 各sampleごとのweight
|
597 |
+
loss = loss * loss_weights
|
598 |
+
|
599 |
+
if args.min_snr_gamma:
|
600 |
+
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization)
|
601 |
+
if args.scale_v_pred_loss_like_noise_pred:
|
602 |
+
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler)
|
603 |
+
if args.v_pred_like_loss:
|
604 |
+
loss = add_v_prediction_like_loss(loss, timesteps, noise_scheduler, args.v_pred_like_loss)
|
605 |
+
if args.debiased_estimation_loss:
|
606 |
+
loss = apply_debiased_estimation(loss, timesteps, noise_scheduler)
|
607 |
+
|
608 |
+
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
|
609 |
+
|
610 |
+
accelerator.backward(loss)
|
611 |
+
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
|
612 |
+
params_to_clip = accelerator.unwrap_model(text_encoder).get_input_embeddings().parameters()
|
613 |
+
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
614 |
+
|
615 |
+
optimizer.step()
|
616 |
+
lr_scheduler.step()
|
617 |
+
optimizer.zero_grad(set_to_none=True)
|
618 |
+
|
619 |
+
# Let's make sure we don't update any embedding weights besides the newly added token
|
620 |
+
with torch.no_grad():
|
621 |
+
for text_encoder, orig_embeds_params, index_no_updates in zip(
|
622 |
+
text_encoders, orig_embeds_params_list, index_no_updates_list
|
623 |
+
):
|
624 |
+
# if full_fp16/bf16, input_embeddings_weight is fp16/bf16, orig_embeds_params is fp32
|
625 |
+
input_embeddings_weight = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight
|
626 |
+
input_embeddings_weight[index_no_updates] = orig_embeds_params.to(input_embeddings_weight.dtype)[
|
627 |
+
index_no_updates
|
628 |
+
]
|
629 |
+
|
630 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
631 |
+
if accelerator.sync_gradients:
|
632 |
+
progress_bar.update(1)
|
633 |
+
global_step += 1
|
634 |
+
|
635 |
+
self.sample_images(
|
636 |
+
accelerator,
|
637 |
+
args,
|
638 |
+
None,
|
639 |
+
global_step,
|
640 |
+
accelerator.device,
|
641 |
+
vae,
|
642 |
+
tokenizer_or_list,
|
643 |
+
text_encoder_or_list,
|
644 |
+
unet,
|
645 |
+
prompt_replacement,
|
646 |
+
)
|
647 |
+
|
648 |
+
# 指定ステップごとにモデルを保存
|
649 |
+
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
|
650 |
+
accelerator.wait_for_everyone()
|
651 |
+
if accelerator.is_main_process:
|
652 |
+
updated_embs_list = []
|
653 |
+
for text_encoder, token_ids in zip(text_encoders, token_ids_list):
|
654 |
+
updated_embs = (
|
655 |
+
accelerator.unwrap_model(text_encoder)
|
656 |
+
.get_input_embeddings()
|
657 |
+
.weight[token_ids]
|
658 |
+
.data.detach()
|
659 |
+
.clone()
|
660 |
+
)
|
661 |
+
updated_embs_list.append(updated_embs)
|
662 |
+
|
663 |
+
ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, global_step)
|
664 |
+
save_model(ckpt_name, updated_embs_list, global_step, epoch)
|
665 |
+
|
666 |
+
if args.save_state:
|
667 |
+
train_util.save_and_remove_state_stepwise(args, accelerator, global_step)
|
668 |
+
|
669 |
+
remove_step_no = train_util.get_remove_step_no(args, global_step)
|
670 |
+
if remove_step_no is not None:
|
671 |
+
remove_ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, remove_step_no)
|
672 |
+
remove_model(remove_ckpt_name)
|
673 |
+
|
674 |
+
current_loss = loss.detach().item()
|
675 |
+
if args.logging_dir is not None:
|
676 |
+
logs = {"loss": current_loss, "lr": float(lr_scheduler.get_last_lr()[0])}
|
677 |
+
if (
|
678 |
+
args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower()
|
679 |
+
): # tracking d*lr value
|
680 |
+
logs["lr/d*lr"] = (
|
681 |
+
lr_scheduler.optimizers[0].param_groups[0]["d"] * lr_scheduler.optimizers[0].param_groups[0]["lr"]
|
682 |
+
)
|
683 |
+
accelerator.log(logs, step=global_step)
|
684 |
+
|
685 |
+
loss_total += current_loss
|
686 |
+
avr_loss = loss_total / (step + 1)
|
687 |
+
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
|
688 |
+
progress_bar.set_postfix(**logs)
|
689 |
+
|
690 |
+
if global_step >= args.max_train_steps:
|
691 |
+
break
|
692 |
+
|
693 |
+
if args.logging_dir is not None:
|
694 |
+
logs = {"loss/epoch": loss_total / len(train_dataloader)}
|
695 |
+
accelerator.log(logs, step=epoch + 1)
|
696 |
+
|
697 |
+
accelerator.wait_for_everyone()
|
698 |
+
|
699 |
+
updated_embs_list = []
|
700 |
+
for text_encoder, token_ids in zip(text_encoders, token_ids_list):
|
701 |
+
updated_embs = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[token_ids].data.detach().clone()
|
702 |
+
updated_embs_list.append(updated_embs)
|
703 |
+
|
704 |
+
if args.save_every_n_epochs is not None:
|
705 |
+
saving = (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs
|
706 |
+
if accelerator.is_main_process and saving:
|
707 |
+
ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, epoch + 1)
|
708 |
+
save_model(ckpt_name, updated_embs_list, epoch + 1, global_step)
|
709 |
+
|
710 |
+
remove_epoch_no = train_util.get_remove_epoch_no(args, epoch + 1)
|
711 |
+
if remove_epoch_no is not None:
|
712 |
+
remove_ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, remove_epoch_no)
|
713 |
+
remove_model(remove_ckpt_name)
|
714 |
+
|
715 |
+
if args.save_state:
|
716 |
+
train_util.save_and_remove_state_on_epoch_end(args, accelerator, epoch + 1)
|
717 |
+
|
718 |
+
self.sample_images(
|
719 |
+
accelerator,
|
720 |
+
args,
|
721 |
+
epoch + 1,
|
722 |
+
global_step,
|
723 |
+
accelerator.device,
|
724 |
+
vae,
|
725 |
+
tokenizer_or_list,
|
726 |
+
text_encoder_or_list,
|
727 |
+
unet,
|
728 |
+
prompt_replacement,
|
729 |
+
)
|
730 |
+
|
731 |
+
# end of epoch
|
732 |
+
|
733 |
+
is_main_process = accelerator.is_main_process
|
734 |
+
if is_main_process:
|
735 |
+
text_encoder = accelerator.unwrap_model(text_encoder)
|
736 |
+
updated_embs = text_encoder.get_input_embeddings().weight[token_ids].data.detach().clone()
|
737 |
+
|
738 |
+
accelerator.end_training()
|
739 |
+
|
740 |
+
if is_main_process and (args.save_state or args.save_state_on_train_end):
|
741 |
+
train_util.save_state_on_train_end(args, accelerator)
|
742 |
+
|
743 |
+
if is_main_process:
|
744 |
+
ckpt_name = train_util.get_last_ckpt_name(args, "." + args.save_model_as)
|
745 |
+
save_model(ckpt_name, updated_embs_list, global_step, num_train_epochs, force_sync_upload=True)
|
746 |
+
|
747 |
+
logger.info("model saved.")
|
748 |
+
|
749 |
+
|
750 |
+
def setup_parser() -> argparse.ArgumentParser:
|
751 |
+
parser = argparse.ArgumentParser()
|
752 |
+
|
753 |
+
add_logging_arguments(parser)
|
754 |
+
train_util.add_sd_models_arguments(parser)
|
755 |
+
train_util.add_dataset_arguments(parser, True, True, False)
|
756 |
+
train_util.add_training_arguments(parser, True)
|
757 |
+
train_util.add_masked_loss_arguments(parser)
|
758 |
+
deepspeed_utils.add_deepspeed_arguments(parser)
|
759 |
+
train_util.add_optimizer_arguments(parser)
|
760 |
+
config_util.add_config_arguments(parser)
|
761 |
+
custom_train_functions.add_custom_train_arguments(parser, False)
|
762 |
+
|
763 |
+
parser.add_argument(
|
764 |
+
"--save_model_as",
|
765 |
+
type=str,
|
766 |
+
default="pt",
|
767 |
+
choices=[None, "ckpt", "pt", "safetensors"],
|
768 |
+
help="format to save the model (default is .pt) / モデル保存時の形式(デフォルトはpt)",
|
769 |
+
)
|
770 |
+
|
771 |
+
parser.add_argument(
|
772 |
+
"--weights", type=str, default=None, help="embedding weights to initialize / 学習するネットワークの初期重み"
|
773 |
+
)
|
774 |
+
parser.add_argument(
|
775 |
+
"--num_vectors_per_token", type=int, default=1, help="number of vectors per token / トークンに割り当てるembeddingsの要素数"
|
776 |
+
)
|
777 |
+
parser.add_argument(
|
778 |
+
"--token_string",
|
779 |
+
type=str,
|
780 |
+
default=None,
|
781 |
+
help="token string used in training, must not exist in tokenizer / 学習時に使用されるトークン文字列、tokenizerに存在しない文字であること",
|
782 |
+
)
|
783 |
+
parser.add_argument(
|
784 |
+
"--init_word", type=str, default=None, help="words to initialize vector / ベクトルを初期化に使用する単語、複数可"
|
785 |
+
)
|
786 |
+
parser.add_argument(
|
787 |
+
"--use_object_template",
|
788 |
+
action="store_true",
|
789 |
+
help="ignore caption and use default templates for object / キャプションは使わずデフォルトの物体用テンプレートで学習する",
|
790 |
+
)
|
791 |
+
parser.add_argument(
|
792 |
+
"--use_style_template",
|
793 |
+
action="store_true",
|
794 |
+
help="ignore caption and use default templates for stype / キャプションは使わずデフォルトのスタイル用テンプレートで学習する",
|
795 |
+
)
|
796 |
+
parser.add_argument(
|
797 |
+
"--no_half_vae",
|
798 |
+
action="store_true",
|
799 |
+
help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う",
|
800 |
+
)
|
801 |
+
|
802 |
+
return parser
|
803 |
+
|
804 |
+
|
805 |
+
if __name__ == "__main__":
|
806 |
+
parser = setup_parser()
|
807 |
+
|
808 |
+
args = parser.parse_args()
|
809 |
+
train_util.verify_command_line_training_args(args)
|
810 |
+
args = train_util.read_config_from_file(args, parser)
|
811 |
+
|
812 |
+
trainer = TextualInversionTrainer()
|
813 |
+
trainer.train(args)
|