ACCC1380's picture
Upload lora-scripts/sd-scripts/tools/latent_upscaler.py with huggingface_hub
0cfe429 verified
# 外部から簡単にupscalerを呼ぶためのスクリプト
# 単体で動くようにモデル定義も含めている
import argparse
import glob
import os
import cv2
from diffusers import AutoencoderKL
from typing import Dict, List
import numpy as np
import torch
from library.device_utils import init_ipex, get_preferred_device
init_ipex()
from torch import nn
from tqdm import tqdm
from PIL import Image
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels=None, kernel_size=3, stride=1, padding=1):
super(ResidualBlock, self).__init__()
if out_channels is None:
out_channels = in_channels
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size, stride, padding, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.relu2 = nn.ReLU(inplace=True) # このReLUはresidualに足す前にかけるほうがいいかも
# initialize weights
self._initialize_weights()
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
out = self.conv2(out)
out = self.bn2(out)
out += residual
out = self.relu2(out)
return out
class Upscaler(nn.Module):
def __init__(self):
super(Upscaler, self).__init__()
# define layers
# latent has 4 channels
self.conv1 = nn.Conv2d(4, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
self.bn1 = nn.BatchNorm2d(128)
self.relu1 = nn.ReLU(inplace=True)
# resblocks
# 数の暴力で20個:次元数を増やすよりもブロックを増やしたほうがreceptive fieldが広がるはずだぞ
self.resblock1 = ResidualBlock(128)
self.resblock2 = ResidualBlock(128)
self.resblock3 = ResidualBlock(128)
self.resblock4 = ResidualBlock(128)
self.resblock5 = ResidualBlock(128)
self.resblock6 = ResidualBlock(128)
self.resblock7 = ResidualBlock(128)
self.resblock8 = ResidualBlock(128)
self.resblock9 = ResidualBlock(128)
self.resblock10 = ResidualBlock(128)
self.resblock11 = ResidualBlock(128)
self.resblock12 = ResidualBlock(128)
self.resblock13 = ResidualBlock(128)
self.resblock14 = ResidualBlock(128)
self.resblock15 = ResidualBlock(128)
self.resblock16 = ResidualBlock(128)
self.resblock17 = ResidualBlock(128)
self.resblock18 = ResidualBlock(128)
self.resblock19 = ResidualBlock(128)
self.resblock20 = ResidualBlock(128)
# last convs
self.conv2 = nn.Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
self.bn2 = nn.BatchNorm2d(64)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
self.bn3 = nn.BatchNorm2d(64)
self.relu3 = nn.ReLU(inplace=True)
# final conv: output 4 channels
self.conv_final = nn.Conv2d(64, 4, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0))
# initialize weights
self._initialize_weights()
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
# initialize final conv weights to 0: 流行りのzero conv
nn.init.constant_(self.conv_final.weight, 0)
def forward(self, x):
inp = x
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
# いくつかのresblockを通した後に、residualを足すことで精度向上と学習速度向上が見込めるはず
residual = x
x = self.resblock1(x)
x = self.resblock2(x)
x = self.resblock3(x)
x = self.resblock4(x)
x = x + residual
residual = x
x = self.resblock5(x)
x = self.resblock6(x)
x = self.resblock7(x)
x = self.resblock8(x)
x = x + residual
residual = x
x = self.resblock9(x)
x = self.resblock10(x)
x = self.resblock11(x)
x = self.resblock12(x)
x = x + residual
residual = x
x = self.resblock13(x)
x = self.resblock14(x)
x = self.resblock15(x)
x = self.resblock16(x)
x = x + residual
residual = x
x = self.resblock17(x)
x = self.resblock18(x)
x = self.resblock19(x)
x = self.resblock20(x)
x = x + residual
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.conv3(x)
x = self.bn3(x)
# ここにreluを入れないほうがいい気がする
x = self.conv_final(x)
# network estimates the difference between the input and the output
x = x + inp
return x
def support_latents(self) -> bool:
return False
def upscale(
self,
vae: AutoencoderKL,
lowreso_images: List[Image.Image],
lowreso_latents: torch.Tensor,
dtype: torch.dtype,
width: int,
height: int,
batch_size: int = 1,
vae_batch_size: int = 1,
):
# assertion
assert lowreso_images is not None, "Upscaler requires lowreso image"
# make upsampled image with lanczos4
upsampled_images = []
for lowreso_image in lowreso_images:
upsampled_image = np.array(lowreso_image.resize((width, height), Image.LANCZOS))
upsampled_images.append(upsampled_image)
# convert to tensor: this tensor is too large to be converted to cuda
upsampled_images = [torch.from_numpy(upsampled_image).permute(2, 0, 1).float() for upsampled_image in upsampled_images]
upsampled_images = torch.stack(upsampled_images, dim=0)
upsampled_images = upsampled_images.to(dtype)
# normalize to [-1, 1]
upsampled_images = upsampled_images / 127.5 - 1.0
# convert upsample images to latents with batch size
# logger.info("Encoding upsampled (LANCZOS4) images...")
upsampled_latents = []
for i in tqdm(range(0, upsampled_images.shape[0], vae_batch_size)):
batch = upsampled_images[i : i + vae_batch_size].to(vae.device)
with torch.no_grad():
batch = vae.encode(batch).latent_dist.sample()
upsampled_latents.append(batch)
upsampled_latents = torch.cat(upsampled_latents, dim=0)
# upscale (refine) latents with this model with batch size
logger.info("Upscaling latents...")
upscaled_latents = []
for i in range(0, upsampled_latents.shape[0], batch_size):
with torch.no_grad():
upscaled_latents.append(self.forward(upsampled_latents[i : i + batch_size]))
upscaled_latents = torch.cat(upscaled_latents, dim=0)
return upscaled_latents * 0.18215
# external interface: returns a model
def create_upscaler(**kwargs):
weights = kwargs["weights"]
model = Upscaler()
logger.info(f"Loading weights from {weights}...")
if os.path.splitext(weights)[1] == ".safetensors":
from safetensors.torch import load_file
sd = load_file(weights)
else:
sd = torch.load(weights, map_location=torch.device("cpu"))
model.load_state_dict(sd)
return model
# another interface: upscale images with a model for given images from command line
def upscale_images(args: argparse.Namespace):
DEVICE = get_preferred_device()
us_dtype = torch.float16 # TODO: support fp32/bf16
os.makedirs(args.output_dir, exist_ok=True)
# load VAE with Diffusers
assert args.vae_path is not None, "VAE path is required"
logger.info(f"Loading VAE from {args.vae_path}...")
vae = AutoencoderKL.from_pretrained(args.vae_path, subfolder="vae")
vae.to(DEVICE, dtype=us_dtype)
# prepare model
logger.info("Preparing model...")
upscaler: Upscaler = create_upscaler(weights=args.weights)
# logger.info("Loading weights from", args.weights)
# upscaler.load_state_dict(torch.load(args.weights))
upscaler.eval()
upscaler.to(DEVICE, dtype=us_dtype)
# load images
image_paths = glob.glob(args.image_pattern)
images = []
for image_path in image_paths:
image = Image.open(image_path)
image = image.convert("RGB")
# make divisible by 8
width = image.width
height = image.height
if width % 8 != 0:
width = width - (width % 8)
if height % 8 != 0:
height = height - (height % 8)
if width != image.width or height != image.height:
image = image.crop((0, 0, width, height))
images.append(image)
# debug output
if args.debug:
for image, image_path in zip(images, image_paths):
image_debug = image.resize((image.width * 2, image.height * 2), Image.LANCZOS)
basename = os.path.basename(image_path)
basename_wo_ext, ext = os.path.splitext(basename)
dest_file_name = os.path.join(args.output_dir, f"{basename_wo_ext}_lanczos4{ext}")
image_debug.save(dest_file_name)
# upscale
logger.info("Upscaling...")
upscaled_latents = upscaler.upscale(
vae, images, None, us_dtype, width * 2, height * 2, batch_size=args.batch_size, vae_batch_size=args.vae_batch_size
)
upscaled_latents /= 0.18215
# decode with batch
logger.info("Decoding...")
upscaled_images = []
for i in tqdm(range(0, upscaled_latents.shape[0], args.vae_batch_size)):
with torch.no_grad():
batch = vae.decode(upscaled_latents[i : i + args.vae_batch_size]).sample
batch = batch.to("cpu")
upscaled_images.append(batch)
upscaled_images = torch.cat(upscaled_images, dim=0)
# tensor to numpy
upscaled_images = upscaled_images.permute(0, 2, 3, 1).numpy()
upscaled_images = (upscaled_images + 1.0) * 127.5
upscaled_images = upscaled_images.clip(0, 255).astype(np.uint8)
upscaled_images = upscaled_images[..., ::-1]
# save images
for i, image in enumerate(upscaled_images):
basename = os.path.basename(image_paths[i])
basename_wo_ext, ext = os.path.splitext(basename)
dest_file_name = os.path.join(args.output_dir, f"{basename_wo_ext}_upscaled{ext}")
cv2.imwrite(dest_file_name, image)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--vae_path", type=str, default=None, help="VAE path")
parser.add_argument("--weights", type=str, default=None, help="Weights path")
parser.add_argument("--image_pattern", type=str, default=None, help="Image pattern")
parser.add_argument("--output_dir", type=str, default=".", help="Output directory")
parser.add_argument("--batch_size", type=int, default=4, help="Batch size")
parser.add_argument("--vae_batch_size", type=int, default=1, help="VAE batch size")
parser.add_argument("--debug", action="store_true", help="Debug mode")
args = parser.parse_args()
upscale_images(args)