private-model / lora-scripts /sd-scripts /sdxl_minimal_inference.py
ACCC1380's picture
Upload lora-scripts/sd-scripts/sdxl_minimal_inference.py with huggingface_hub
e08d418 verified
# 手元で推論を行うための最低限のコード。HuggingFace/DiffusersのCLIP、schedulerとVAEを使う
# Minimal code for performing inference at local. Use HuggingFace/Diffusers CLIP, scheduler and VAE
import argparse
import datetime
import math
import os
import random
from einops import repeat
import numpy as np
import torch
from library.device_utils import init_ipex, get_preferred_device
init_ipex()
from tqdm import tqdm
from transformers import CLIPTokenizer
from diffusers import EulerDiscreteScheduler
from PIL import Image
# import open_clip
from safetensors.torch import load_file
from library import model_util, sdxl_model_util
import networks.lora as lora
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
# scheduler: このあたりの設定はSD1/2と同じでいいらしい
# scheduler: The settings around here seem to be the same as SD1/2
SCHEDULER_LINEAR_START = 0.00085
SCHEDULER_LINEAR_END = 0.0120
SCHEDULER_TIMESTEPS = 1000
SCHEDLER_SCHEDULE = "scaled_linear"
# Time EmbeddingはDiffusersからのコピー
# Time Embedding is copied from Diffusers
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
if not repeat_only:
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
device=timesteps.device
)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
else:
embedding = repeat(timesteps, "b -> b d", d=dim)
return embedding
def get_timestep_embedding(x, outdim):
assert len(x.shape) == 2
b, dims = x.shape[0], x.shape[1]
# x = rearrange(x, "b d -> (b d)")
x = torch.flatten(x)
emb = timestep_embedding(x, outdim)
# emb = rearrange(emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=outdim)
emb = torch.reshape(emb, (b, dims * outdim))
return emb
if __name__ == "__main__":
# 画像生成条件を変更する場合はここを変更 / change here to change image generation conditions
# SDXLの追加のvector embeddingへ渡す値 / Values to pass to additional vector embedding of SDXL
target_height = 1024
target_width = 1024
original_height = target_height
original_width = target_width
crop_top = 0
crop_left = 0
steps = 50
guidance_scale = 7
seed = None # 1
DEVICE = get_preferred_device()
DTYPE = torch.float16 # bfloat16 may work
parser = argparse.ArgumentParser()
parser.add_argument("--ckpt_path", type=str, required=True)
parser.add_argument("--prompt", type=str, default="A photo of a cat")
parser.add_argument("--prompt2", type=str, default=None)
parser.add_argument("--negative_prompt", type=str, default="")
parser.add_argument("--output_dir", type=str, default=".")
parser.add_argument(
"--lora_weights",
type=str,
nargs="*",
default=[],
help="LoRA weights, only supports networks.lora, each argument is a `path;multiplier` (semi-colon separated)",
)
parser.add_argument("--interactive", action="store_true")
args = parser.parse_args()
if args.prompt2 is None:
args.prompt2 = args.prompt
# HuggingFaceのmodel id
text_encoder_1_name = "openai/clip-vit-large-patch14"
text_encoder_2_name = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
# checkpointを読み込む。モデル変換についてはそちらの関数を参照
# Load checkpoint. For model conversion, see this function
# 本体RAMが少ない場合はGPUにロードするといいかも
# If the main RAM is small, it may be better to load it on the GPU
text_model1, text_model2, vae, unet, _, _ = sdxl_model_util.load_models_from_sdxl_checkpoint(
sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, args.ckpt_path, "cpu"
)
# Text Encoder 1はSDXL本体でもHuggingFaceのものを使っている
# In SDXL, Text Encoder 1 is also using HuggingFace's
# Text Encoder 2はSDXL本体ではopen_clipを使っている
# それを使ってもいいが、SD2のDiffusers版に合わせる形で、HuggingFaceのものを使う
# 重みの変換コードはSD2とほぼ同じ
# In SDXL, Text Encoder 2 is using open_clip
# It's okay to use it, but to match the Diffusers version of SD2, use HuggingFace's
# The weight conversion code is almost the same as SD2
# VAEの構造はSDXLもSD1/2と同じだが、重みは異なるようだ。何より謎のscale値が違う
# fp16でNaNが出やすいようだ
# The structure of VAE is the same as SD1/2, but the weights seem to be different. Above all, the mysterious scale value is different.
# NaN seems to be more likely to occur in fp16
unet.to(DEVICE, dtype=DTYPE)
unet.eval()
vae_dtype = DTYPE
if DTYPE == torch.float16:
logger.info("use float32 for vae")
vae_dtype = torch.float32
vae.to(DEVICE, dtype=vae_dtype)
vae.eval()
text_model1.to(DEVICE, dtype=DTYPE)
text_model1.eval()
text_model2.to(DEVICE, dtype=DTYPE)
text_model2.eval()
unet.set_use_memory_efficient_attention(True, False)
if torch.__version__ >= "2.0.0": # PyTorch 2.0.0 以上対応のxformersなら以下が使える
vae.set_use_memory_efficient_attention_xformers(True)
# Tokenizers
tokenizer1 = CLIPTokenizer.from_pretrained(text_encoder_1_name)
# tokenizer2 = lambda x: open_clip.tokenize(x, context_length=77)
tokenizer2 = CLIPTokenizer.from_pretrained(text_encoder_2_name)
# LoRA
for weights_file in args.lora_weights:
if ";" in weights_file:
weights_file, multiplier = weights_file.split(";")
multiplier = float(multiplier)
else:
multiplier = 1.0
lora_model, weights_sd = lora.create_network_from_weights(
multiplier, weights_file, vae, [text_model1, text_model2], unet, None, True
)
lora_model.merge_to([text_model1, text_model2], unet, weights_sd, DTYPE, DEVICE)
# scheduler
scheduler = EulerDiscreteScheduler(
num_train_timesteps=SCHEDULER_TIMESTEPS,
beta_start=SCHEDULER_LINEAR_START,
beta_end=SCHEDULER_LINEAR_END,
beta_schedule=SCHEDLER_SCHEDULE,
)
def generate_image(prompt, prompt2, negative_prompt, seed=None):
# 将来的にサイズ情報も変えられるようにする / Make it possible to change the size information in the future
# prepare embedding
with torch.no_grad():
# vector
emb1 = get_timestep_embedding(torch.FloatTensor([original_height, original_width]).unsqueeze(0), 256)
emb2 = get_timestep_embedding(torch.FloatTensor([crop_top, crop_left]).unsqueeze(0), 256)
emb3 = get_timestep_embedding(torch.FloatTensor([target_height, target_width]).unsqueeze(0), 256)
# logger.info("emb1", emb1.shape)
c_vector = torch.cat([emb1, emb2, emb3], dim=1).to(DEVICE, dtype=DTYPE)
uc_vector = c_vector.clone().to(
DEVICE, dtype=DTYPE
) # ちょっとここ正しいかどうかわからない I'm not sure if this is right
# crossattn
# Text Encoderを二つ呼ぶ関数 Function to call two Text Encoders
def call_text_encoder(text, text2):
# text encoder 1
batch_encoding = tokenizer1(
text,
truncation=True,
return_length=True,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
tokens = batch_encoding["input_ids"].to(DEVICE)
with torch.no_grad():
enc_out = text_model1(tokens, output_hidden_states=True, return_dict=True)
text_embedding1 = enc_out["hidden_states"][11]
# text_embedding = pipe.text_encoder.text_model.final_layer_norm(text_embedding) # layer normは通さないらしい
# text encoder 2
# tokens = tokenizer2(text2).to(DEVICE)
tokens = tokenizer2(
text,
truncation=True,
return_length=True,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
tokens = batch_encoding["input_ids"].to(DEVICE)
with torch.no_grad():
enc_out = text_model2(tokens, output_hidden_states=True, return_dict=True)
text_embedding2_penu = enc_out["hidden_states"][-2]
# logger.info("hidden_states2", text_embedding2_penu.shape)
text_embedding2_pool = enc_out["text_embeds"] # do not support Textual Inversion
# 連結して終了 concat and finish
text_embedding = torch.cat([text_embedding1, text_embedding2_penu], dim=2)
return text_embedding, text_embedding2_pool
# cond
c_ctx, c_ctx_pool = call_text_encoder(prompt, prompt2)
# logger.info(c_ctx.shape, c_ctx_p.shape, c_vector.shape)
c_vector = torch.cat([c_ctx_pool, c_vector], dim=1)
# uncond
uc_ctx, uc_ctx_pool = call_text_encoder(negative_prompt, negative_prompt)
uc_vector = torch.cat([uc_ctx_pool, uc_vector], dim=1)
text_embeddings = torch.cat([uc_ctx, c_ctx])
vector_embeddings = torch.cat([uc_vector, c_vector])
# メモリ使用量を減らすにはここでText Encoderを削除するかCPUへ移動する
if seed is not None:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# # random generator for initial noise
# generator = torch.Generator(device="cuda").manual_seed(seed)
generator = None
else:
generator = None
# get the initial random noise unless the user supplied it
# SDXLはCPUでlatentsを作成しているので一応合わせておく、Diffusersはtarget deviceでlatentsを作成している
# SDXL creates latents in CPU, Diffusers creates latents in target device
latents_shape = (1, 4, target_height // 8, target_width // 8)
latents = torch.randn(
latents_shape,
generator=generator,
device="cpu",
dtype=torch.float32,
).to(DEVICE, dtype=DTYPE)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * scheduler.init_noise_sigma
# set timesteps
scheduler.set_timesteps(steps, DEVICE)
# このへんはDiffusersからのコピペ
# Copy from Diffusers
timesteps = scheduler.timesteps.to(DEVICE) # .to(DTYPE)
num_latent_input = 2
with torch.no_grad():
for i, t in enumerate(tqdm(timesteps)):
# expand the latents if we are doing classifier free guidance
latent_model_input = latents.repeat((num_latent_input, 1, 1, 1))
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
noise_pred = unet(latent_model_input, t, text_embeddings, vector_embeddings)
noise_pred_uncond, noise_pred_text = noise_pred.chunk(num_latent_input) # uncond by negative prompt
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
# latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
latents = scheduler.step(noise_pred, t, latents).prev_sample
# latents = 1 / 0.18215 * latents
latents = 1 / sdxl_model_util.VAE_SCALE_FACTOR * latents
latents = latents.to(vae_dtype)
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
# image = self.numpy_to_pil(image)
image = (image * 255).round().astype("uint8")
image = [Image.fromarray(im) for im in image]
# 保存して終了 save and finish
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
for i, img in enumerate(image):
img.save(os.path.join(args.output_dir, f"image_{timestamp}_{i:03d}.png"))
if not args.interactive:
generate_image(args.prompt, args.prompt2, args.negative_prompt, seed)
else:
# loop for interactive
while True:
prompt = input("prompt: ")
if prompt == "":
break
prompt2 = input("prompt2: ")
if prompt2 == "":
prompt2 = prompt
negative_prompt = input("negative prompt: ")
seed = input("seed: ")
if seed == "":
seed = None
else:
seed = int(seed)
generate_image(prompt, prompt2, negative_prompt, seed)
logger.info("Done!")