Datasets:
Tasks:
Image Segmentation
Formats:
parquet
Sub-tasks:
instance-segmentation
Languages:
English
Size:
10K - 100K
ArXiv:
License:
File size: 8,814 Bytes
d91fe0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
from pathlib import Path
import datasets
import json
from datetime import datetime
_VERSION = "0.1.0"
_CITATION = """
@inproceedings{8100027,
title = {Scene Parsing through ADE20K Dataset},
author = {Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
year = 2017,
booktitle = {2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
volume = {},
number = {},
pages = {5122--5130},
doi = {10.1109/CVPR.2017.544},
keywords = {Image segmentation;Semantics;Sun;Labeling;Visualization;Neural networks;Computer vision}
}
@misc{zhou2018semantic,
title = {Semantic Understanding of Scenes through the ADE20K Dataset},
author = {Bolei Zhou and Hang Zhao and Xavier Puig and Tete Xiao and Sanja Fidler and Adela Barriuso and Antonio Torralba},
year = 2018,
eprint = {1608.05442},
archiveprefix = {arXiv},
primaryclass = {cs.CV}
}
"""
_DESCRIPTION = """
ADE20K is composed of more than 27K images from the SUN and Places databases.
Images are fully annotated with objects, spanning over 3K object categories.
Many of the images also contain object parts, and parts of parts.
We also provide the original annotated polygons, as well as object instances for amodal segmentation.
Images are also anonymized, blurring faces and license plates.
"""
_HOMEPAGE = "https://groups.csail.mit.edu/vision/datasets/ADE20K/"
_LICENSE = "Creative Commons BSD-3 License Agreement"
_FEATURES = datasets.Features(
{
"image": datasets.Image(mode="RGB"),
"segmentations": datasets.Sequence(datasets.Image(mode="RGB")),
"instances": datasets.Sequence(datasets.Image(mode="L")),
"filename": datasets.Value("string"),
"folder": datasets.Value("string"),
"source": datasets.Features(
{
"folder": datasets.Value("string"),
"filename": datasets.Value("string"),
"origin": datasets.Value("string"),
}
),
"scene": datasets.Sequence(datasets.Value("string")),
"objects": [
{
"id": datasets.Value("uint16"),
"name": datasets.Value("string"),
"name_ndx": datasets.Value("uint16"),
"hypernym": datasets.Sequence(datasets.Value("string")),
"raw_name": datasets.Value("string"),
"attributes": datasets.Value("string"),
"depth_ordering_rank": datasets.Value("uint16"),
"occluded": datasets.Value("bool"),
"crop": datasets.Value(dtype="bool"),
"parts": {
"is_part_of": datasets.Value("uint16"),
"part_level": datasets.Value("uint8"),
"has_parts": datasets.Sequence(datasets.Value("uint16")),
},
"polygon": {
"x": datasets.Sequence(datasets.Value("uint16")),
"y": datasets.Sequence(datasets.Value("uint16")),
"click_date": datasets.Sequence(datasets.Value("timestamp[us]")),
},
"saved_date": datasets.Value("timestamp[us]"),
}
],
}
)
class ADE20K(datasets.GeneratorBasedBuilder):
DEFAULT_WRITER_BATCH_SIZE = 1000
def _info(self):
return datasets.DatasetInfo(
features=_FEATURES,
supervised_keys=None,
description=_DESCRIPTION,
homepage=_HOMEPAGE,
license=_LICENSE,
version=_VERSION,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
archive_training = Path("ADE20K_2021_17_01/images/ADE/training")
archive_validation = Path("ADE20K_2021_17_01/images/ADE/validation")
jsons_training = sorted(list(archive_training.rglob("*.json")))
jsons_validation = sorted(list(archive_validation.rglob("*.json")))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"jsons": jsons_training},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"jsons": jsons_validation},
),
]
def parse_date(self, date: str) -> datetime:
if date == []:
return None
try:
timestamp = datetime.strptime(date, "%d-%m-%y %H:%M:%S:%f")
return timestamp
except:
pass
try:
timestamp = datetime.strptime(date, "%d-%b-%Y %H:%M:%S:%f")
return timestamp
except:
pass
try:
timestamp = datetime.strptime(date, "%d-%m-%y %H:%M:%S")
return timestamp
except:
pass
try:
timestamp = datetime.strptime(date, "%d-%b-%Y %H:%M:%S")
return timestamp
except:
pass
raise ValueError(f"Could not parse date: {date}")
def parse_imsize(self, imsize: list[int]) -> list[int]:
if len(imsize) == 2:
return imsize + [3]
return imsize
def parse_json(self, json_path: Path):
with json_path.open("r", encoding="ISO-8859-1") as f:
data = json.load(f)
annotation = data["annotation"]
objects = annotation["object"]
segmentations = list(
json_path.parent.glob(
f"{annotation['filename'].removesuffix(".jpg")}_parts*"
)
)
segmentations = [str(part) for part in segmentations]
main_mask = json_path.parent / annotation["filename"]
main_mask = str(main_mask.with_suffix("")) + "_seg.png"
segmentations.insert(0, main_mask)
instances = [
json_path.parent / object["instance_mask"] for object in objects
]
instances = [str(instance) for instance in instances]
return {
"image": str(json_path.parent / annotation["filename"]),
"segmentations": segmentations,
"instances": instances,
"filename": annotation["filename"],
"folder": annotation["folder"],
"source": {
"folder": annotation["source"]["folder"],
"filename": annotation["source"]["filename"],
"origin": annotation["source"]["origin"],
},
"scene": annotation["scene"],
"objects": [
{
"id": object["id"],
"name": object["name"],
"name_ndx": object["name_ndx"],
"hypernym": object["hypernym"],
"raw_name": object["raw_name"],
"attributes": ""
if object["attributes"] == []
else object["attributes"],
"depth_ordering_rank": object["depth_ordering_rank"],
"occluded": object["occluded"] == "yes",
"crop": object["crop"] == "1",
"parts": {
"part_level": object["parts"]["part_level"],
"is_part_of": None
if object["parts"]["ispartof"] == []
else object["parts"]["ispartof"],
"has_parts": [object["parts"]["hasparts"]]
if isinstance(object["parts"]["hasparts"], int)
else object["parts"]["hasparts"],
},
"polygon": {
"x": list(
map(lambda x: int(max(0, x)), object["polygon"]["x"])
),
"y": list(
map(lambda y: int(max(0, y)), object["polygon"]["y"])
),
"click_date": []
if "click_date" not in object["polygon"]
else list(
map(self.parse_date, object["polygon"]["click_date"])
),
},
"saved_date": self.parse_date(object["saved_date"]),
}
for object in objects
],
}
def _generate_examples(self, jsons: list[Path]):
for i, json_path in enumerate(jsons):
yield i, self.parse_json(json_path)
|