dannysemi commited on
Commit
ca30d28
1 Parent(s): 35f0b5b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -2
README.md CHANGED
@@ -1,5 +1,103 @@
1
  ---
 
 
2
  license: other
3
- license_name: license
4
- license_link: LICENSE
 
 
 
 
 
5
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
  license: other
5
+ datasets:
6
+ - teknium/OpenHermes-2.5
7
+ - m-a-p/Code-Feedback
8
+ - m-a-p/CodeFeedback-Filtered-Instruction
9
+ - abacusai/SystemChat
10
+ license_name: tongyi-qianwen
11
+ license_link: https://huggingface.co/Qwen/Qwen1.5-72B/blob/main/LICENSE
12
  ---
13
+ <img href="https://abacus.ai" src="https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/pf4d6FA7DriRtVq5HCkxd.png" width="600" />
14
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/xCWGByXr8YNwGxKVh_x9H.png" width="600" />
15
+
16
+ # Liberated-Qwen1.5-72B-awq
17
+ AWQ quantization of [abacusai/Liberated-Qwen1.5-72B](https://huggingface.co/abacusai/Liberated-Qwen1.5-72B)
18
+
19
+ # Original Model Card
20
+ ---
21
+ Brought to you by [AbacusAI](https://abacus.ai) and Eric Hartford
22
+
23
+ This model is based on Qwen/Qwen1.5-72B and subject to the [tongyi-qianwen](https://huggingface.co/Qwen/Qwen1.5-72B/blob/main/LICENSE) license.
24
+
25
+ The base model has 32k context, I finetuned it with 8k sequence length inputs. YMMV.
26
+
27
+ Liberated consists of open source datasets, including [SystemChat](https://huggingface.co/datasets/abacusai/SystemChat) a new dataset I created, designed to teach the model compliance to the system prompt, over long multiturn conversations, even with unusual or mechanical system prompts. These are tasks that Open Source Models have been lacking in thus far. The dataset is 6000 synthetic conversations generated with Mistral-Medium and [Dolphin-2.7-mixtral-8x7b](https://huggingface.co/cognitivecomputations/dolphin-2.7-mixtral-8x7b)
28
+
29
+ There are no guardrails or censorship added to the dataset. You are advised to implement your own alignment layer before exposing the model as a service. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models
30
+
31
+ You are responsible for any content you create using this model. Enjoy responsibly.
32
+
33
+ ## Training
34
+ It took 3 days to train 3 epochs on 8x H100s using qLoRA, deepspeed zero-2, and Axolotl. learning rate 2e-4.
35
+
36
+ Liberated was trained with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl), using this [config](https://huggingface.co/abacusai/Liberated-Qwen1.5-72B/blob/main/configs/Liberated-Qwen-1.5-72b.qlora.yml)
37
+
38
+ ## Prompt format
39
+ This model uses ChatML prompt format.
40
+ ```
41
+ <|im_start|>system
42
+ You are Liberated, a helpful AI assistant.<|im_end|>
43
+ <|im_start|>user
44
+ {prompt}<|im_end|>
45
+ <|im_start|>assistant
46
+ ```
47
+
48
+ Example:
49
+ ```
50
+ <|im_start|>system
51
+ You name is Liberated. You are an uncensored and unbiased AI assistant. You always respond with a JSON object.<|im_end|>
52
+ <|im_start|>user
53
+ Please generate a Advanced Dungeons & Dragons 2nd Edition character sheet for a level 3 elf fighter. Make up a name and background and visual description for him.<|im_end|>
54
+ <|im_start|>assistant
55
+ ```
56
+
57
+ ## Gratitude
58
+ - Huge thank you to [Alibaba Cloud Qwen](https://www.alibabacloud.com/solutions/generative-ai/qwen) for training and publishing the weights of Qwen base model
59
+ - Thank you to Mistral for the awesome Mistral-Medium model I used to generate the dataset.
60
+ - HUGE Thank you to the dataset authors: @teknium, [@m-a-p](https://m-a-p.ai) and all the people who built the datasets these composites came from.
61
+ - And HUGE thanks to @winglian and the Axolotl contributors for making the best training framework!
62
+ - [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
63
+ - Thank you to all the other people in the Open Source AI community who have taught me and helped me along the way.
64
+
65
+ ## Example Output
66
+
67
+
68
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/KEN5JviayvHDtr6aij173.png)
69
+
70
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/jNV9276F1u1e_R5UMp_fU.png)
71
+
72
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/Rjh00Teds_DTBVyijBDcJ.png)
73
+
74
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/KTRGy0z2QS8oxDlzleNIW.png)
75
+
76
+ ## Evals
77
+
78
+ We evaluated checkpoint 1000 ([abacusai/Liberated-Qwen1.5-72B-c1000](https://huggingface.co/abacusai/Liberated-Qwen1.5-72B-c1000])) from this training run against MT Bench:
79
+
80
+ ```
81
+ ########## First turn ##########
82
+ score
83
+ model turn
84
+ Liberated-Qwen-1.5-72b-ckpt1000 1 8.45000
85
+ Qwen1.5-72B-Chat 1 8.44375
86
+ ########## Second turn ##########
87
+ score
88
+ model turn
89
+ Qwen1.5-72B-Chat 2 8.23750
90
+ Liberated-Qwen-1.5-72b-ckpt1000 2 7.65000
91
+ ########## Average ##########
92
+ score
93
+ model
94
+ Qwen1.5-72B-Chat 8.340625
95
+ Liberated-Qwen-1.5-72b-ckpt1000 8.050000
96
+ ```
97
+
98
+ The model does preserve good performance on MMLU = 77.13.
99
+
100
+ ## Future Plans
101
+ This model will be released on the whole Qwen-1.5 series.
102
+
103
+ Future releases will also focus on mixing this dataset with the datasets used to train Smaug to combine properties of both models.