Update README.md
Browse files
README.md
CHANGED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- scikit-learn/iris
|
4 |
+
---
|
5 |
+
|
6 |
+
```python
|
7 |
+
import joblib
|
8 |
+
|
9 |
+
model = joblib.load("iris_svm.joblib")
|
10 |
+
import json
|
11 |
+
|
12 |
+
with open("config.json", "r") as f:
|
13 |
+
config = json.load(f)
|
14 |
+
|
15 |
+
features = config["features"]
|
16 |
+
target = config["targets"][0]
|
17 |
+
target_mapping = config["target_mapping"]
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
# example input data
|
22 |
+
input_data = np.array([
|
23 |
+
[5.1, 3.5, 1.4, 0.2],
|
24 |
+
[4.9, 3.0, 1.4, 0.2],
|
25 |
+
[6.2, 3.4, 5.4, 2.3]
|
26 |
+
])
|
27 |
+
|
28 |
+
# make sure the input data has the correct shape
|
29 |
+
if input_data.shape[1] != len(features):
|
30 |
+
raise ValueError(f"Input data must have {len(features)} features.")
|
31 |
+
|
32 |
+
predicted_classes = model.predict(input_data)
|
33 |
+
predicted_class_names = [list(target_mapping.keys())[list(target_mapping.values()).index(predicted_class)] for predicted_class in predicted_classes]
|
34 |
+
|
35 |
+
print("Predicted classes:", predicted_class_names)
|
36 |
+
```
|