Update README.md
Browse files
README.md
CHANGED
@@ -18,6 +18,409 @@ tags:
|
|
18 |
- sentence-transformers
|
19 |
- feature-extraction
|
20 |
- sentence-similarity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
---
|
22 |
|
23 |
# E5-large-en-ru
|
|
|
18 |
- sentence-transformers
|
19 |
- feature-extraction
|
20 |
- sentence-similarity
|
21 |
+
model-index:
|
22 |
+
- name: e5-large-en-ru
|
23 |
+
results:
|
24 |
+
- task:
|
25 |
+
type: Classification
|
26 |
+
dataset:
|
27 |
+
type: mteb/amazon_counterfactual
|
28 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
29 |
+
config: en
|
30 |
+
split: test
|
31 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
32 |
+
metrics:
|
33 |
+
- type: accuracy
|
34 |
+
value: 79.5671641791045
|
35 |
+
- type: ap
|
36 |
+
value: 44.011060753169424
|
37 |
+
- type: f1
|
38 |
+
value: 73.76504135120175
|
39 |
+
- task:
|
40 |
+
type: Reranking
|
41 |
+
dataset:
|
42 |
+
type: mteb/askubuntudupquestions-reranking
|
43 |
+
name: MTEB AskUbuntuDupQuestions
|
44 |
+
config: default
|
45 |
+
split: test
|
46 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
47 |
+
metrics:
|
48 |
+
- type: map
|
49 |
+
value: 57.69669466706412
|
50 |
+
- type: mrr
|
51 |
+
value: 70.61370531592138
|
52 |
+
- task:
|
53 |
+
type: STS
|
54 |
+
dataset:
|
55 |
+
type: mteb/biosses-sts
|
56 |
+
name: MTEB BIOSSES
|
57 |
+
config: default
|
58 |
+
split: test
|
59 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
60 |
+
metrics:
|
61 |
+
- type: cos_sim_pearson
|
62 |
+
value: 86.36465960226795
|
63 |
+
- type: cos_sim_spearman
|
64 |
+
value: 84.57602350761223
|
65 |
+
- type: euclidean_pearson
|
66 |
+
value: 84.31391364490506
|
67 |
+
- type: euclidean_spearman
|
68 |
+
value: 84.57602350761223
|
69 |
+
- type: manhattan_pearson
|
70 |
+
value: 84.15796224236456
|
71 |
+
- type: manhattan_spearman
|
72 |
+
value: 84.3645729064343
|
73 |
+
- task:
|
74 |
+
type: Reranking
|
75 |
+
dataset:
|
76 |
+
type: mteb/mind_small
|
77 |
+
name: MTEB MindSmallReranking
|
78 |
+
config: default
|
79 |
+
split: test
|
80 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
81 |
+
metrics:
|
82 |
+
- type: map
|
83 |
+
value: 31.105698873583098
|
84 |
+
- type: mrr
|
85 |
+
value: 32.163780846856206
|
86 |
+
- task:
|
87 |
+
type: STS
|
88 |
+
dataset:
|
89 |
+
type: mteb/sickr-sts
|
90 |
+
name: MTEB SICK-R
|
91 |
+
config: default
|
92 |
+
split: test
|
93 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
94 |
+
metrics:
|
95 |
+
- type: cos_sim_pearson
|
96 |
+
value: 83.75973907678062
|
97 |
+
- type: cos_sim_spearman
|
98 |
+
value: 80.54994608351296
|
99 |
+
- type: euclidean_pearson
|
100 |
+
value: 80.58496551316748
|
101 |
+
- type: euclidean_spearman
|
102 |
+
value: 80.54993996457814
|
103 |
+
- type: manhattan_pearson
|
104 |
+
value: 80.49280884070782
|
105 |
+
- type: manhattan_spearman
|
106 |
+
value: 80.41230093993471
|
107 |
+
- task:
|
108 |
+
type: STS
|
109 |
+
dataset:
|
110 |
+
type: mteb/sts12-sts
|
111 |
+
name: MTEB STS12
|
112 |
+
config: default
|
113 |
+
split: test
|
114 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
115 |
+
metrics:
|
116 |
+
- type: cos_sim_pearson
|
117 |
+
value: 87.345503928209
|
118 |
+
- type: cos_sim_spearman
|
119 |
+
value: 80.4634619001261
|
120 |
+
- type: euclidean_pearson
|
121 |
+
value: 84.2666575030677
|
122 |
+
- type: euclidean_spearman
|
123 |
+
value: 80.46347579495351
|
124 |
+
- type: manhattan_pearson
|
125 |
+
value: 84.14370038922885
|
126 |
+
- type: manhattan_spearman
|
127 |
+
value: 80.36565043629274
|
128 |
+
- task:
|
129 |
+
type: STS
|
130 |
+
dataset:
|
131 |
+
type: mteb/sts13-sts
|
132 |
+
name: MTEB STS13
|
133 |
+
config: default
|
134 |
+
split: test
|
135 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
136 |
+
metrics:
|
137 |
+
- type: cos_sim_pearson
|
138 |
+
value: 75.14644787456163
|
139 |
+
- type: cos_sim_spearman
|
140 |
+
value: 75.88443166051762
|
141 |
+
- type: euclidean_pearson
|
142 |
+
value: 76.19117255044588
|
143 |
+
- type: euclidean_spearman
|
144 |
+
value: 75.88443166051762
|
145 |
+
- type: manhattan_pearson
|
146 |
+
value: 76.00450128624708
|
147 |
+
- type: manhattan_spearman
|
148 |
+
value: 75.69943934692938
|
149 |
+
- task:
|
150 |
+
type: STS
|
151 |
+
dataset:
|
152 |
+
type: mteb/sts14-sts
|
153 |
+
name: MTEB STS14
|
154 |
+
config: default
|
155 |
+
split: test
|
156 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
157 |
+
metrics:
|
158 |
+
- type: cos_sim_pearson
|
159 |
+
value: 77.60763524019471
|
160 |
+
- type: cos_sim_spearman
|
161 |
+
value: 77.2591077818027
|
162 |
+
- type: euclidean_pearson
|
163 |
+
value: 77.14021401348042
|
164 |
+
- type: euclidean_spearman
|
165 |
+
value: 77.25911027186999
|
166 |
+
- type: manhattan_pearson
|
167 |
+
value: 76.87139081109731
|
168 |
+
- type: manhattan_spearman
|
169 |
+
value: 76.98379627773018
|
170 |
+
- task:
|
171 |
+
type: STS
|
172 |
+
dataset:
|
173 |
+
type: mteb/sts15-sts
|
174 |
+
name: MTEB STS15
|
175 |
+
config: default
|
176 |
+
split: test
|
177 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
178 |
+
metrics:
|
179 |
+
- type: cos_sim_pearson
|
180 |
+
value: 88.18321035966198
|
181 |
+
- type: cos_sim_spearman
|
182 |
+
value: 89.0469892725742
|
183 |
+
- type: euclidean_pearson
|
184 |
+
value: 88.05085809092137
|
185 |
+
- type: euclidean_spearman
|
186 |
+
value: 89.04698194601134
|
187 |
+
- type: manhattan_pearson
|
188 |
+
value: 88.03620967628684
|
189 |
+
- type: manhattan_spearman
|
190 |
+
value: 89.02859425307943
|
191 |
+
- task:
|
192 |
+
type: STS
|
193 |
+
dataset:
|
194 |
+
type: mteb/sts16-sts
|
195 |
+
name: MTEB STS16
|
196 |
+
config: default
|
197 |
+
split: test
|
198 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
199 |
+
metrics:
|
200 |
+
- type: cos_sim_pearson
|
201 |
+
value: 82.39166503459249
|
202 |
+
- type: cos_sim_spearman
|
203 |
+
value: 83.71826060604693
|
204 |
+
- type: euclidean_pearson
|
205 |
+
value: 82.70145770530107
|
206 |
+
- type: euclidean_spearman
|
207 |
+
value: 83.71826045549452
|
208 |
+
- type: manhattan_pearson
|
209 |
+
value: 82.56870669205291
|
210 |
+
- type: manhattan_spearman
|
211 |
+
value: 83.55353737670136
|
212 |
+
- task:
|
213 |
+
type: STS
|
214 |
+
dataset:
|
215 |
+
type: mteb/sts17-crosslingual-sts
|
216 |
+
name: MTEB STS17 (en-en)
|
217 |
+
config: en-en
|
218 |
+
split: test
|
219 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
220 |
+
metrics:
|
221 |
+
- type: cos_sim_pearson
|
222 |
+
value: 89.58290721169323
|
223 |
+
- type: cos_sim_spearman
|
224 |
+
value: 89.25956993522081
|
225 |
+
- type: euclidean_pearson
|
226 |
+
value: 89.4716703635447
|
227 |
+
- type: euclidean_spearman
|
228 |
+
value: 89.25956993522081
|
229 |
+
- type: manhattan_pearson
|
230 |
+
value: 89.4475864648432
|
231 |
+
- type: manhattan_spearman
|
232 |
+
value: 89.14694174575615
|
233 |
+
- task:
|
234 |
+
type: Reranking
|
235 |
+
dataset:
|
236 |
+
type: mteb/scidocs-reranking
|
237 |
+
name: MTEB SciDocsRR
|
238 |
+
config: default
|
239 |
+
split: test
|
240 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
241 |
+
metrics:
|
242 |
+
- type: map
|
243 |
+
value: 81.4879065181404
|
244 |
+
- type: mrr
|
245 |
+
value: 94.81295937178291
|
246 |
+
- task:
|
247 |
+
type: PairClassification
|
248 |
+
dataset:
|
249 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
250 |
+
name: MTEB SprintDuplicateQuestions
|
251 |
+
config: default
|
252 |
+
split: test
|
253 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
254 |
+
metrics:
|
255 |
+
- type: cos_sim_accuracy
|
256 |
+
value: 99.73960396039604
|
257 |
+
- type: cos_sim_ap
|
258 |
+
value: 92.70840767967965
|
259 |
+
- type: cos_sim_f1
|
260 |
+
value: 86.90890990542557
|
261 |
+
- type: cos_sim_precision
|
262 |
+
value: 86.5213082259663
|
263 |
+
- type: cos_sim_recall
|
264 |
+
value: 87.3
|
265 |
+
- type: dot_accuracy
|
266 |
+
value: 99.73960396039604
|
267 |
+
- type: dot_ap
|
268 |
+
value: 92.70828452993575
|
269 |
+
- type: dot_f1
|
270 |
+
value: 86.90890990542557
|
271 |
+
- type: dot_precision
|
272 |
+
value: 86.5213082259663
|
273 |
+
- type: dot_recall
|
274 |
+
value: 87.3
|
275 |
+
- type: euclidean_accuracy
|
276 |
+
value: 99.73960396039604
|
277 |
+
- type: euclidean_ap
|
278 |
+
value: 92.7084093403562
|
279 |
+
- type: euclidean_f1
|
280 |
+
value: 86.90890990542557
|
281 |
+
- type: euclidean_precision
|
282 |
+
value: 86.5213082259663
|
283 |
+
- type: euclidean_recall
|
284 |
+
value: 87.3
|
285 |
+
- type: manhattan_accuracy
|
286 |
+
value: 99.74059405940594
|
287 |
+
- type: manhattan_ap
|
288 |
+
value: 92.7406819850299
|
289 |
+
- type: manhattan_f1
|
290 |
+
value: 87.01234567901234
|
291 |
+
- type: manhattan_precision
|
292 |
+
value: 85.95121951219512
|
293 |
+
- type: manhattan_recall
|
294 |
+
value: 88.1
|
295 |
+
- type: max_accuracy
|
296 |
+
value: 99.74059405940594
|
297 |
+
- type: max_ap
|
298 |
+
value: 92.7406819850299
|
299 |
+
- type: max_f1
|
300 |
+
value: 87.01234567901234
|
301 |
+
- task:
|
302 |
+
type: Reranking
|
303 |
+
dataset:
|
304 |
+
type: mteb/stackoverflowdupquestions-reranking
|
305 |
+
name: MTEB StackOverflowDupQuestions
|
306 |
+
config: default
|
307 |
+
split: test
|
308 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
309 |
+
metrics:
|
310 |
+
- type: map
|
311 |
+
value: 48.566931484512196
|
312 |
+
- type: mrr
|
313 |
+
value: 49.23111100500807
|
314 |
+
- task:
|
315 |
+
type: PairClassification
|
316 |
+
dataset:
|
317 |
+
type: mteb/twittersemeval2015-pairclassification
|
318 |
+
name: MTEB TwitterSemEval2015
|
319 |
+
config: default
|
320 |
+
split: test
|
321 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
322 |
+
metrics:
|
323 |
+
- type: cos_sim_accuracy
|
324 |
+
value: 86.27287357692079
|
325 |
+
- type: cos_sim_ap
|
326 |
+
value: 74.20855854505362
|
327 |
+
- type: cos_sim_f1
|
328 |
+
value: 69.09903201787044
|
329 |
+
- type: cos_sim_precision
|
330 |
+
value: 65.22961574507966
|
331 |
+
- type: cos_sim_recall
|
332 |
+
value: 73.45646437994723
|
333 |
+
- type: dot_accuracy
|
334 |
+
value: 86.27287357692079
|
335 |
+
- type: dot_ap
|
336 |
+
value: 74.20853189774614
|
337 |
+
- type: dot_f1
|
338 |
+
value: 69.09903201787044
|
339 |
+
- type: dot_precision
|
340 |
+
value: 65.22961574507966
|
341 |
+
- type: dot_recall
|
342 |
+
value: 73.45646437994723
|
343 |
+
- type: euclidean_accuracy
|
344 |
+
value: 86.27287357692079
|
345 |
+
- type: euclidean_ap
|
346 |
+
value: 74.20857455896677
|
347 |
+
- type: euclidean_f1
|
348 |
+
value: 69.09903201787044
|
349 |
+
- type: euclidean_precision
|
350 |
+
value: 65.22961574507966
|
351 |
+
- type: euclidean_recall
|
352 |
+
value: 73.45646437994723
|
353 |
+
- type: manhattan_accuracy
|
354 |
+
value: 86.2192287059665
|
355 |
+
- type: manhattan_ap
|
356 |
+
value: 74.0513280969461
|
357 |
+
- type: manhattan_f1
|
358 |
+
value: 69.13344473621389
|
359 |
+
- type: manhattan_precision
|
360 |
+
value: 63.12118570183086
|
361 |
+
- type: manhattan_recall
|
362 |
+
value: 76.41160949868075
|
363 |
+
- type: max_accuracy
|
364 |
+
value: 86.27287357692079
|
365 |
+
- type: max_ap
|
366 |
+
value: 74.20857455896677
|
367 |
+
- type: max_f1
|
368 |
+
value: 69.13344473621389
|
369 |
+
- task:
|
370 |
+
type: PairClassification
|
371 |
+
dataset:
|
372 |
+
type: mteb/twitterurlcorpus-pairclassification
|
373 |
+
name: MTEB TwitterURLCorpus
|
374 |
+
config: default
|
375 |
+
split: test
|
376 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
377 |
+
metrics:
|
378 |
+
- type: cos_sim_accuracy
|
379 |
+
value: 89.16055419722902
|
380 |
+
- type: cos_sim_ap
|
381 |
+
value: 86.03614264194854
|
382 |
+
- type: cos_sim_f1
|
383 |
+
value: 78.89855695205357
|
384 |
+
- type: cos_sim_precision
|
385 |
+
value: 73.74656938215409
|
386 |
+
- type: cos_sim_recall
|
387 |
+
value: 84.82445334154605
|
388 |
+
- type: dot_accuracy
|
389 |
+
value: 89.16055419722902
|
390 |
+
- type: dot_ap
|
391 |
+
value: 86.03614225282097
|
392 |
+
- type: dot_f1
|
393 |
+
value: 78.89855695205357
|
394 |
+
- type: dot_precision
|
395 |
+
value: 73.74656938215409
|
396 |
+
- type: dot_recall
|
397 |
+
value: 84.82445334154605
|
398 |
+
- type: euclidean_accuracy
|
399 |
+
value: 89.16055419722902
|
400 |
+
- type: euclidean_ap
|
401 |
+
value: 86.0361548355667
|
402 |
+
- type: euclidean_f1
|
403 |
+
value: 78.89855695205357
|
404 |
+
- type: euclidean_precision
|
405 |
+
value: 73.74656938215409
|
406 |
+
- type: euclidean_recall
|
407 |
+
value: 84.82445334154605
|
408 |
+
- type: manhattan_accuracy
|
409 |
+
value: 89.11786393448985
|
410 |
+
- type: manhattan_ap
|
411 |
+
value: 86.00799361972808
|
412 |
+
- type: manhattan_f1
|
413 |
+
value: 78.84721152788472
|
414 |
+
- type: manhattan_precision
|
415 |
+
value: 75.26776338816941
|
416 |
+
- type: manhattan_recall
|
417 |
+
value: 82.78410840776101
|
418 |
+
- type: max_accuracy
|
419 |
+
value: 89.16055419722902
|
420 |
+
- type: max_ap
|
421 |
+
value: 86.0361548355667
|
422 |
+
- type: max_f1
|
423 |
+
value: 78.89855695205357
|
424 |
---
|
425 |
|
426 |
# E5-large-en-ru
|