--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: distilbert-base-uncased metrics: - f1 model-index: - name: distilbert-base-uncased-lora-text-classification-safeguard-promptinjection results: [] --- # distilbert-base-uncased-lora-text-classification-safeguard-promptinjection This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0200 - F1: 0.9971 - Auprc: 0.9966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Auprc | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.0598 | 1.0 | 1030 | 0.0220 | 0.9961 | 0.9946 | | 0.0273 | 2.0 | 2060 | 0.0199 | 0.9961 | 0.9946 | | 0.0321 | 3.0 | 3090 | 0.0334 | 0.9951 | 0.9945 | | 0.0099 | 4.0 | 4120 | 0.0345 | 0.9937 | 0.9929 | | 0.0059 | 5.0 | 5150 | 0.0200 | 0.9971 | 0.9966 | ### Framework versions - PEFT 0.11.1 - Transformers 4.40.2 - Pytorch 2.3.0+cu118 - Datasets 2.19.2 - Tokenizers 0.19.1