|
|
|
|
|
|
|
|
|
|
|
|
|
import os
|
|
import platform
|
|
import sys
|
|
import threading
|
|
import time
|
|
import urllib.parse
|
|
from os import PathLike
|
|
from pathlib import Path
|
|
from typing import List, NamedTuple, Optional, Tuple
|
|
|
|
import numpy as np
|
|
from openvino.runtime import Core, Type, get_version
|
|
from IPython.display import HTML, Image, display
|
|
|
|
import openvino as ov
|
|
from openvino.runtime.passes import Manager, MatcherPass, WrapType, Matcher
|
|
from openvino.runtime import opset10 as ops
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def device_widget(default="AUTO", exclude=None, added=None):
|
|
import openvino as ov
|
|
import ipywidgets as widgets
|
|
|
|
core = ov.Core()
|
|
|
|
supported_devices = core.available_devices + ["AUTO"]
|
|
exclude = exclude or []
|
|
if exclude:
|
|
for ex_device in exclude:
|
|
if ex_device in supported_devices:
|
|
supported_devices.remove(ex_device)
|
|
|
|
added = added or []
|
|
if added:
|
|
for add_device in added:
|
|
if add_device not in supported_devices:
|
|
supported_devices.append(add_device)
|
|
|
|
device = widgets.Dropdown(
|
|
options=supported_devices,
|
|
value=default,
|
|
description="Device:",
|
|
disabled=False,
|
|
)
|
|
return device
|
|
|
|
|
|
def quantization_widget(default=True):
|
|
import ipywidgets as widgets
|
|
|
|
to_quantize = widgets.Checkbox(
|
|
value=default,
|
|
description="Quantization",
|
|
disabled=False,
|
|
)
|
|
|
|
return to_quantize
|
|
|
|
|
|
def pip_install(*args):
|
|
import subprocess
|
|
|
|
cli_args = []
|
|
for arg in args:
|
|
cli_args.extend(str(arg).split(" "))
|
|
subprocess.run([sys.executable, "-m", "pip", "install", *cli_args], shell=(platform.system() == "Windows"), check=True)
|
|
|
|
|
|
def load_image(path: str) -> np.ndarray:
|
|
"""
|
|
Loads an image from `path` and returns it as BGR numpy array. `path`
|
|
should point to an image file, either a local filename or a url. The image is
|
|
not stored to the filesystem. Use the `download_file` function to download and
|
|
store an image.
|
|
|
|
:param path: Local path name or URL to image.
|
|
:return: image as BGR numpy array
|
|
"""
|
|
import cv2
|
|
import requests
|
|
|
|
if path.startswith("http"):
|
|
|
|
|
|
response = requests.get(path, headers={"User-Agent": "Mozilla/5.0"})
|
|
array = np.asarray(bytearray(response.content), dtype="uint8")
|
|
image = cv2.imdecode(array, -1)
|
|
else:
|
|
image = cv2.imread(path)
|
|
return image
|
|
|
|
|
|
def download_file(
|
|
url: PathLike,
|
|
filename: PathLike = None,
|
|
directory: PathLike = None,
|
|
show_progress: bool = True,
|
|
silent: bool = False,
|
|
timeout: int = 10,
|
|
) -> PathLike:
|
|
"""
|
|
Download a file from a url and save it to the local filesystem. The file is saved to the
|
|
current directory by default, or to `directory` if specified. If a filename is not given,
|
|
the filename of the URL will be used.
|
|
|
|
:param url: URL that points to the file to download
|
|
:param filename: Name of the local file to save. Should point to the name of the file only,
|
|
not the full path. If None the filename from the url will be used
|
|
:param directory: Directory to save the file to. Will be created if it doesn't exist
|
|
If None the file will be saved to the current working directory
|
|
:param show_progress: If True, show an TQDM ProgressBar
|
|
:param silent: If True, do not print a message if the file already exists
|
|
:param timeout: Number of seconds before cancelling the connection attempt
|
|
:return: path to downloaded file
|
|
"""
|
|
from tqdm.notebook import tqdm_notebook
|
|
import requests
|
|
|
|
filename = filename or Path(urllib.parse.urlparse(url).path).name
|
|
chunk_size = 16384
|
|
|
|
filename = Path(filename)
|
|
if len(filename.parts) > 1:
|
|
raise ValueError(
|
|
"`filename` should refer to the name of the file, excluding the directory. "
|
|
"Use the `directory` parameter to specify a target directory for the downloaded file."
|
|
)
|
|
|
|
|
|
if directory is not None:
|
|
directory = Path(directory)
|
|
directory.mkdir(parents=True, exist_ok=True)
|
|
filename = directory / Path(filename)
|
|
|
|
try:
|
|
response = requests.get(url=url, headers={"User-agent": "Mozilla/5.0"}, stream=True)
|
|
response.raise_for_status()
|
|
except (
|
|
requests.exceptions.HTTPError
|
|
) as error:
|
|
raise Exception(error) from None
|
|
except requests.exceptions.Timeout:
|
|
raise Exception(
|
|
"Connection timed out. If you access the internet through a proxy server, please "
|
|
"make sure the proxy is set in the shell from where you launched Jupyter."
|
|
) from None
|
|
except requests.exceptions.RequestException as error:
|
|
raise Exception(f"File downloading failed with error: {error}") from None
|
|
|
|
|
|
filesize = int(response.headers.get("Content-length", 0))
|
|
if not filename.exists() or (os.stat(filename).st_size != filesize):
|
|
with tqdm_notebook(
|
|
total=filesize,
|
|
unit="B",
|
|
unit_scale=True,
|
|
unit_divisor=1024,
|
|
desc=str(filename),
|
|
disable=not show_progress,
|
|
) as progress_bar:
|
|
with open(filename, "wb") as file_object:
|
|
for chunk in response.iter_content(chunk_size):
|
|
file_object.write(chunk)
|
|
progress_bar.update(len(chunk))
|
|
progress_bar.refresh()
|
|
else:
|
|
if not silent:
|
|
print(f"'{filename}' already exists.")
|
|
|
|
response.close()
|
|
|
|
return filename.resolve()
|
|
|
|
|
|
def download_ir_model(model_xml_url: str, destination_folder: PathLike = None) -> PathLike:
|
|
"""
|
|
Download IR model from `model_xml_url`. Downloads model xml and bin file; the weights file is
|
|
assumed to exist at the same location and name as model_xml_url with a ".bin" extension.
|
|
|
|
:param model_xml_url: URL to model xml file to download
|
|
:param destination_folder: Directory where downloaded model xml and bin are saved. If None, model
|
|
files are saved to the current directory
|
|
:return: path to downloaded xml model file
|
|
"""
|
|
model_bin_url = model_xml_url[:-4] + ".bin"
|
|
model_xml_path = download_file(model_xml_url, directory=destination_folder, show_progress=False)
|
|
download_file(model_bin_url, directory=destination_folder)
|
|
return model_xml_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def normalize_minmax(data):
|
|
"""
|
|
Normalizes the values in `data` between 0 and 1
|
|
"""
|
|
if data.max() == data.min():
|
|
raise ValueError("Normalization is not possible because all elements of" f"`data` have the same value: {data.max()}.")
|
|
return (data - data.min()) / (data.max() - data.min())
|
|
|
|
|
|
def to_rgb(image_data: np.ndarray) -> np.ndarray:
|
|
"""
|
|
Convert image_data from BGR to RGB
|
|
"""
|
|
import cv2
|
|
|
|
return cv2.cvtColor(image_data, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
def to_bgr(image_data: np.ndarray) -> np.ndarray:
|
|
"""
|
|
Convert image_data from RGB to BGR
|
|
"""
|
|
import cv2
|
|
|
|
return cv2.cvtColor(image_data, cv2.COLOR_RGB2BGR)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class VideoPlayer:
|
|
"""
|
|
Custom video player to fulfill FPS requirements. You can set target FPS and output size,
|
|
flip the video horizontally or skip first N frames.
|
|
|
|
:param source: Video source. It could be either camera device or video file.
|
|
:param size: Output frame size.
|
|
:param flip: Flip source horizontally.
|
|
:param fps: Target FPS.
|
|
:param skip_first_frames: Skip first N frames.
|
|
"""
|
|
|
|
def __init__(self, source, size=None, flip=False, fps=None, skip_first_frames=0, width=1280, height=720):
|
|
import cv2
|
|
|
|
self.cv2 = cv2
|
|
self.__cap = cv2.VideoCapture(source)
|
|
|
|
self.__cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
|
|
self.__cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
|
|
|
|
if not self.__cap.isOpened():
|
|
raise RuntimeError(f"Cannot open {'camera' if isinstance(source, int) else ''} {source}")
|
|
|
|
self.__cap.set(cv2.CAP_PROP_POS_FRAMES, skip_first_frames)
|
|
|
|
self.__input_fps = self.__cap.get(cv2.CAP_PROP_FPS)
|
|
if self.__input_fps <= 0:
|
|
self.__input_fps = 60
|
|
|
|
self.__output_fps = fps if fps is not None else self.__input_fps
|
|
self.__flip = flip
|
|
self.__size = None
|
|
self.__interpolation = None
|
|
if size is not None:
|
|
self.__size = size
|
|
|
|
self.__interpolation = cv2.INTER_AREA if size[0] < self.__cap.get(cv2.CAP_PROP_FRAME_WIDTH) else cv2.INTER_LINEAR
|
|
|
|
_, self.__frame = self.__cap.read()
|
|
self.__lock = threading.Lock()
|
|
self.__thread = None
|
|
self.__stop = False
|
|
|
|
"""
|
|
Start playing.
|
|
"""
|
|
|
|
def start(self):
|
|
self.__stop = False
|
|
self.__thread = threading.Thread(target=self.__run, daemon=True)
|
|
self.__thread.start()
|
|
|
|
"""
|
|
Stop playing and release resources.
|
|
"""
|
|
|
|
def stop(self):
|
|
self.__stop = True
|
|
if self.__thread is not None:
|
|
self.__thread.join()
|
|
self.__cap.release()
|
|
|
|
def __run(self):
|
|
prev_time = 0
|
|
while not self.__stop:
|
|
t1 = time.time()
|
|
ret, frame = self.__cap.read()
|
|
if not ret:
|
|
break
|
|
|
|
|
|
if 1 / self.__output_fps < time.time() - prev_time:
|
|
prev_time = time.time()
|
|
|
|
with self.__lock:
|
|
self.__frame = frame
|
|
|
|
t2 = time.time()
|
|
|
|
wait_time = 1 / self.__input_fps - (t2 - t1)
|
|
|
|
time.sleep(max(0, wait_time))
|
|
|
|
self.__frame = None
|
|
|
|
"""
|
|
Get current frame.
|
|
"""
|
|
|
|
def next(self):
|
|
import cv2
|
|
|
|
with self.__lock:
|
|
if self.__frame is None:
|
|
return None
|
|
|
|
frame = self.__frame.copy()
|
|
if self.__size is not None:
|
|
frame = self.cv2.resize(frame, self.__size, interpolation=self.__interpolation)
|
|
if self.__flip:
|
|
frame = self.cv2.flip(frame, 1)
|
|
return frame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Label(NamedTuple):
|
|
index: int
|
|
color: Tuple
|
|
name: Optional[str] = None
|
|
|
|
|
|
|
|
|
|
|
|
class SegmentationMap(NamedTuple):
|
|
labels: List
|
|
|
|
def get_colormap(self):
|
|
return np.array([label.color for label in self.labels])
|
|
|
|
def get_labels(self):
|
|
labelnames = [label.name for label in self.labels]
|
|
if any(labelnames):
|
|
return labelnames
|
|
else:
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
cityscape_labels = [
|
|
Label(index=0, color=(128, 64, 128), name="road"),
|
|
Label(index=1, color=(244, 35, 232), name="sidewalk"),
|
|
Label(index=2, color=(70, 70, 70), name="building"),
|
|
Label(index=3, color=(102, 102, 156), name="wall"),
|
|
Label(index=4, color=(190, 153, 153), name="fence"),
|
|
Label(index=5, color=(153, 153, 153), name="pole"),
|
|
Label(index=6, color=(250, 170, 30), name="traffic light"),
|
|
Label(index=7, color=(220, 220, 0), name="traffic sign"),
|
|
Label(index=8, color=(107, 142, 35), name="vegetation"),
|
|
Label(index=9, color=(152, 251, 152), name="terrain"),
|
|
Label(index=10, color=(70, 130, 180), name="sky"),
|
|
Label(index=11, color=(220, 20, 60), name="person"),
|
|
Label(index=12, color=(255, 0, 0), name="rider"),
|
|
Label(index=13, color=(0, 0, 142), name="car"),
|
|
Label(index=14, color=(0, 0, 70), name="truck"),
|
|
Label(index=15, color=(0, 60, 100), name="bus"),
|
|
Label(index=16, color=(0, 80, 100), name="train"),
|
|
Label(index=17, color=(0, 0, 230), name="motorcycle"),
|
|
Label(index=18, color=(119, 11, 32), name="bicycle"),
|
|
Label(index=19, color=(255, 255, 255), name="background"),
|
|
]
|
|
|
|
CityScapesSegmentation = SegmentationMap(cityscape_labels)
|
|
|
|
binary_labels = [
|
|
Label(index=0, color=(255, 255, 255), name="background"),
|
|
Label(index=1, color=(0, 0, 0), name="foreground"),
|
|
]
|
|
|
|
BinarySegmentation = SegmentationMap(binary_labels)
|
|
|
|
|
|
|
|
|
|
|
|
def segmentation_map_to_image(result: np.ndarray, colormap: np.ndarray, remove_holes: bool = False) -> np.ndarray:
|
|
"""
|
|
Convert network result of floating point numbers to an RGB image with
|
|
integer values from 0-255 by applying a colormap.
|
|
|
|
:param result: A single network result after converting to pixel values in H,W or 1,H,W shape.
|
|
:param colormap: A numpy array of shape (num_classes, 3) with an RGB value per class.
|
|
:param remove_holes: If True, remove holes in the segmentation result.
|
|
:return: An RGB image where each pixel is an int8 value according to colormap.
|
|
"""
|
|
import cv2
|
|
|
|
if len(result.shape) != 2 and result.shape[0] != 1:
|
|
raise ValueError(f"Expected result with shape (H,W) or (1,H,W), got result with shape {result.shape}")
|
|
|
|
if len(np.unique(result)) > colormap.shape[0]:
|
|
raise ValueError(
|
|
f"Expected max {colormap[0]} classes in result, got {len(np.unique(result))} "
|
|
"different output values. Please make sure to convert the network output to "
|
|
"pixel values before calling this function."
|
|
)
|
|
elif result.shape[0] == 1:
|
|
result = result.squeeze(0)
|
|
|
|
result = result.astype(np.uint8)
|
|
|
|
contour_mode = cv2.RETR_EXTERNAL if remove_holes else cv2.RETR_TREE
|
|
mask = np.zeros((result.shape[0], result.shape[1], 3), dtype=np.uint8)
|
|
for label_index, color in enumerate(colormap):
|
|
label_index_map = result == label_index
|
|
label_index_map = label_index_map.astype(np.uint8) * 255
|
|
contours, hierarchies = cv2.findContours(label_index_map, contour_mode, cv2.CHAIN_APPROX_SIMPLE)
|
|
cv2.drawContours(
|
|
mask,
|
|
contours,
|
|
contourIdx=-1,
|
|
color=color.tolist(),
|
|
thickness=cv2.FILLED,
|
|
)
|
|
|
|
return mask
|
|
|
|
|
|
def segmentation_map_to_overlay(image, result, alpha, colormap, remove_holes=False) -> np.ndarray:
|
|
"""
|
|
Returns a new image where a segmentation mask (created with colormap) is overlayed on
|
|
the source image.
|
|
|
|
:param image: Source image.
|
|
:param result: A single network result after converting to pixel values in H,W or 1,H,W shape.
|
|
:param alpha: Alpha transparency value for the overlay image.
|
|
:param colormap: A numpy array of shape (num_classes, 3) with an RGB value per class.
|
|
:param remove_holes: If True, remove holes in the segmentation result.
|
|
:return: An RGP image with segmentation mask overlayed on the source image.
|
|
"""
|
|
import cv2
|
|
|
|
if len(image.shape) == 2:
|
|
image = np.repeat(np.expand_dims(image, -1), 3, 2)
|
|
mask = segmentation_map_to_image(result, colormap, remove_holes)
|
|
image_height, image_width = image.shape[:2]
|
|
mask = cv2.resize(src=mask, dsize=(image_width, image_height))
|
|
return cv2.addWeighted(mask, alpha, image, 1 - alpha, 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def viz_result_image(
|
|
result_image: np.ndarray,
|
|
source_image: np.ndarray = None,
|
|
source_title: str = None,
|
|
result_title: str = None,
|
|
labels: List[Label] = None,
|
|
resize: bool = False,
|
|
bgr_to_rgb: bool = False,
|
|
hide_axes: bool = False,
|
|
):
|
|
"""
|
|
Show result image, optionally together with source images, and a legend with labels.
|
|
|
|
:param result_image: Numpy array of RGB result image.
|
|
:param source_image: Numpy array of source image. If provided this image will be shown
|
|
next to the result image. source_image is expected to be in RGB format.
|
|
Set bgr_to_rgb to True if source_image is in BGR format.
|
|
:param source_title: Title to display for the source image.
|
|
:param result_title: Title to display for the result image.
|
|
:param labels: List of labels. If provided, a legend will be shown with the given labels.
|
|
:param resize: If true, resize the result image to the same shape as the source image.
|
|
:param bgr_to_rgb: If true, convert the source image from BGR to RGB. Use this option if
|
|
source_image is a BGR image.
|
|
:param hide_axes: If true, do not show matplotlib axes.
|
|
:return: Matplotlib figure with result image
|
|
"""
|
|
import cv2
|
|
import matplotlib.pyplot as plt
|
|
from matplotlib.lines import Line2D
|
|
|
|
if bgr_to_rgb:
|
|
source_image = to_rgb(source_image)
|
|
if resize:
|
|
result_image = cv2.resize(result_image, (source_image.shape[1], source_image.shape[0]))
|
|
|
|
num_images = 1 if source_image is None else 2
|
|
|
|
fig, ax = plt.subplots(1, num_images, figsize=(16, 8), squeeze=False)
|
|
if source_image is not None:
|
|
ax[0, 0].imshow(source_image)
|
|
ax[0, 0].set_title(source_title)
|
|
|
|
ax[0, num_images - 1].imshow(result_image)
|
|
ax[0, num_images - 1].set_title(result_title)
|
|
|
|
if hide_axes:
|
|
for a in ax.ravel():
|
|
a.axis("off")
|
|
if labels:
|
|
colors = labels.get_colormap()
|
|
lines = [
|
|
Line2D(
|
|
[0],
|
|
[0],
|
|
color=[item / 255 for item in c.tolist()],
|
|
linewidth=3,
|
|
linestyle="-",
|
|
)
|
|
for c in colors
|
|
]
|
|
plt.legend(
|
|
lines,
|
|
labels.get_labels(),
|
|
bbox_to_anchor=(1, 1),
|
|
loc="upper left",
|
|
prop={"size": 12},
|
|
)
|
|
plt.close(fig)
|
|
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def show_array(frame: np.ndarray, display_handle=None):
|
|
"""
|
|
Display array `frame`. Replace information at `display_handle` with `frame`
|
|
encoded as jpeg image. `frame` is expected to have data in BGR order.
|
|
|
|
Create a display_handle with: `display_handle = display(display_id=True)`
|
|
"""
|
|
import cv2
|
|
|
|
_, frame = cv2.imencode(ext=".jpeg", img=frame)
|
|
if display_handle is None:
|
|
display_handle = display(Image(data=frame.tobytes()), display_id=True)
|
|
else:
|
|
display_handle.update(Image(data=frame.tobytes()))
|
|
return display_handle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class NotebookAlert(Exception):
|
|
def __init__(self, message: str, alert_class: str):
|
|
"""
|
|
Show an alert box with the given message.
|
|
|
|
:param message: The message to display.
|
|
:param alert_class: The class for styling the message. Options: info, warning, success, danger.
|
|
"""
|
|
self.message = message
|
|
self.alert_class = alert_class
|
|
self.show_message()
|
|
|
|
def show_message(self):
|
|
display(HTML(f"""<div class="alert alert-{self.alert_class}">{self.message}"""))
|
|
|
|
|
|
class DeviceNotFoundAlert(NotebookAlert):
|
|
def __init__(self, device: str):
|
|
"""
|
|
Show a warning message about an unavailable device. This class does not check whether or
|
|
not the device is available, use the `check_device` function to check this. `check_device`
|
|
also shows the warning if the device is not found.
|
|
|
|
:param device: The unavailable device.
|
|
:return: A formatted alert box with the message that `device` is not available, and a list
|
|
of devices that are available.
|
|
"""
|
|
ie = Core()
|
|
supported_devices = ie.available_devices
|
|
self.message = f"Running this cell requires a {device} device, " "which is not available on this system. "
|
|
self.alert_class = "warning"
|
|
if len(supported_devices) == 1:
|
|
self.message += f"The following device is available: {ie.available_devices[0]}"
|
|
else:
|
|
self.message += "The following devices are available: " f"{', '.join(ie.available_devices)}"
|
|
super().__init__(self.message, self.alert_class)
|
|
|
|
|
|
def check_device(device: str) -> bool:
|
|
"""
|
|
Check if the specified device is available on the system.
|
|
|
|
:param device: Device to check. e.g. CPU, GPU
|
|
:return: True if the device is available, False if not. If the device is not available,
|
|
a DeviceNotFoundAlert will be shown.
|
|
"""
|
|
ie = Core()
|
|
if device not in ie.available_devices:
|
|
DeviceNotFoundAlert(device)
|
|
return False
|
|
else:
|
|
return True
|
|
|
|
|
|
def check_openvino_version(version: str) -> bool:
|
|
"""
|
|
Check if the specified OpenVINO version is installed.
|
|
|
|
:param version: the OpenVINO version to check. Example: 2021.4
|
|
:return: True if the version is installed, False if not. If the version is not installed,
|
|
an alert message will be shown.
|
|
"""
|
|
installed_version = get_version()
|
|
if version not in installed_version:
|
|
NotebookAlert(
|
|
f"This notebook requires OpenVINO {version}. "
|
|
f"The version on your system is: <i>{installed_version}</i>.<br>"
|
|
"Please run <span style='font-family:monospace'>pip install --upgrade -r requirements.txt</span> "
|
|
"in the openvino_env environment to install this version. "
|
|
"See the <a href='https://github.com/openvinotoolkit/openvino_notebooks'>"
|
|
"OpenVINO Notebooks README</a> for detailed instructions",
|
|
alert_class="danger",
|
|
)
|
|
return False
|
|
else:
|
|
return True
|
|
|
|
|
|
packed_layername_tensor_dict_list = [{"name": "aten::mul/Multiply"}]
|
|
|
|
|
|
class ReplaceTensor(MatcherPass):
|
|
def __init__(self, packed_layername_tensor_dict_list):
|
|
MatcherPass.__init__(self)
|
|
self.model_changed = False
|
|
|
|
param = WrapType("opset10.Multiply")
|
|
|
|
def callback(matcher: Matcher) -> bool:
|
|
root = matcher.get_match_root()
|
|
if root is None:
|
|
return False
|
|
for y in packed_layername_tensor_dict_list:
|
|
root_name = root.get_friendly_name()
|
|
if root_name.find(y["name"]) != -1:
|
|
max_fp16 = np.array([[[[-np.finfo(np.float16).max]]]]).astype(np.float32)
|
|
new_tenser = ops.constant(max_fp16, Type.f32, name="Constant_4431")
|
|
root.set_arguments([root.input_value(0).node, new_tenser])
|
|
packed_layername_tensor_dict_list.remove(y)
|
|
|
|
return True
|
|
|
|
self.register_matcher(Matcher(param, "ReplaceTensor"), callback)
|
|
|
|
|
|
def optimize_bge_embedding(model_path, output_model_path):
|
|
"""
|
|
optimize_bge_embedding used to optimize BGE model for NPU device
|
|
|
|
Arguments:
|
|
model_path {str} -- original BGE IR model path
|
|
output_model_path {str} -- Converted BGE IR model path
|
|
"""
|
|
core = Core()
|
|
ov_model = core.read_model(model_path)
|
|
manager = Manager()
|
|
manager.register_pass(ReplaceTensor(packed_layername_tensor_dict_list))
|
|
manager.run_passes(ov_model)
|
|
ov.save_model(ov_model, output_model_path, compress_to_fp16=False)
|
|
|