File size: 2,141 Bytes
c6340a4 ec0ec61 c6340a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: apache-2.0
---
# BLSP-Emo: Towards Empathetic Large Speech-Language Models
Chen Wang, Minpeng Liao, Zhongqiang Huang,Junhong Wu, Chenqing Zong, Jiajun Zhang
**Institute of Automation, Chinese Academy of Sciences**
**Alibaba Group**
<a href='https://www.modelscope.cn/studios/Decaderan/Blsp-Qwen-7B-Demo/summary'><img src='https://img.shields.io/badge/ModelScope-Demo-blueviolet'></a>
<a href=''><img src='https://img.shields.io/badge/ModelScope-Checkpoint-blueviolet'></a>
<a href=''><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Checkpoint-blue'></a> <a href='https://cwang621.github.io/blsp-emo.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://arxiv.org/abs/2406.03872'><img src='https://img.shields.io/badge/Paper-Arxiv-red'> </a>
## Introduction
* BLSP-Emo is designed to enable an end-to-end speech-language model to understand emotions in speech and generate empathetic responses, using only existing ASR and SER data.
* BLSP-Emo is built based on Whisper-large-v2 and Qwen-7B-Chat.
![architecture](figures/emotion_blsp.png)
## Example
![Demo](figures/emo-motivation.png)
More examples can be found in the [project page](https://cwang621.github.io/blsp-emo.github.io). You can also try our model online at [modelscope](https://www.modelscope.cn/studios/Decaderan/Blsp-Qwen-7B-Demo/summary).
## License
* The license of our project is [Apache License 2.0]()
* Our models are based on Qwen and Whisper. If you want to use our models, please do not violate the [MIT License](https://github.com/openai/whisper/blob/main/LICENSE) of whisper and the [License](https://github.com/QwenLM/Qwen/blob/main/LICENSE) of Qwen
## Citation
If you find our project useful, hope you can star our repo and cite our paper as follows:
```
@misc{wang2024blspemo,
title={BLSP-Emo: Towards Empathetic Large Speech-Language Models},
author={Chen Wang and Minpeng Liao and Zhongqiang Huang and Junhong Wu and Chengqing Zong and Jiajun Zhang},
year={2024},
eprint={2406.03872},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |