File size: 16,496 Bytes
5426788 2a0dcbe 5426788 4302f48 5426788 abdf980 fd93ebf abdf980 fd93ebf abdf980 4302f48 5426788 4302f48 5426788 9e9cca9 abdf980 5426788 4302f48 5426788 4302f48 5426788 088ea6e 5426788 57b9778 5426788 fd93ebf 9e9cca9 aa25cd2 5426788 17f036a 57b9778 2a0dcbe 5426788 e3330a6 9e9cca9 e3330a6 9e9cca9 aa25cd2 5426788 e3330a6 5426788 e3330a6 5426788 fd93ebf aa25cd2 9e9cca9 aa25cd2 5426788 4302f48 5426788 fd93ebf 17f036a fd93ebf e3330a6 5426788 e3330a6 5426788 e3330a6 4302f48 e3330a6 4302f48 e3330a6 5426788 4302f48 fd93ebf 9e9cca9 fd93ebf 5426788 4302f48 5426788 57b9778 4302f48 fd93ebf 5426788 abdf980 4302f48 0960cf6 abdf980 4302f48 5426788 57b9778 4302f48 fd93ebf 57b9778 5426788 abdf980 fd93ebf abdf980 5426788 fd93ebf 4302f48 fd93ebf 4302f48 fd93ebf 4302f48 fd93ebf 4302f48 fd93ebf 4302f48 57b9778 5426788 78dd83b 5426788 4302f48 fd93ebf 4302f48 5426788 0960cf6 5426788 4302f48 5426788 57b9778 9e9cca9 5426788 fd93ebf 4302f48 5426788 57b9778 5426788 4302f48 fd93ebf 4302f48 fd93ebf 4302f48 fd93ebf 8df5dc1 fd93ebf 5426788 aa25cd2 075bd53 9e9cca9 aa25cd2 9e9cca9 fd93ebf 5426788 8df5dc1 fd93ebf 5426788 9e9cca9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
"""
Geneformer tokenizer.
**Input data:**
| *Required format:* raw counts scRNAseq data without feature selection as .loom or anndata file.
| *Required row (gene) attribute:* "ensembl_id"; Ensembl ID for each gene.
| *Required col (cell) attribute:* "n_counts"; total read counts in that cell.
| *Optional col (cell) attribute:* "filter_pass"; binary indicator of whether cell should be tokenized based on user-defined filtering criteria.
| *Optional col (cell) attributes:* any other cell metadata can be passed on to the tokenized dataset as a custom attribute dictionary as shown below.
**Usage:**
.. code-block :: python
>>> from geneformer import TranscriptomeTokenizer
>>> tk = TranscriptomeTokenizer({"cell_type": "cell_type", "organ_major": "organ"}, nproc=4)
>>> tk.tokenize_data("data_directory", "output_directory", "output_prefix")
**Description:**
| Input data is a directory with .loom or .h5ad files containing raw counts from single cell RNAseq data, including all genes detected in the transcriptome without feature selection. The input file type is specified by the argument file_format in the tokenize_data function.
| The discussion below references the .loom file format, but the analagous labels are required for .h5ad files, just that they will be column instead of row attributes and vice versa due to the transposed format of the two file types.
| Genes should be labeled with Ensembl IDs (loom row attribute "ensembl_id"), which provide a unique identifer for conversion to tokens. Other forms of gene annotations (e.g. gene names) can be converted to Ensembl IDs via Ensembl Biomart. Cells should be labeled with the total read count in the cell (loom column attribute "n_counts") to be used for normalization.
| No cell metadata is required, but custom cell attributes may be passed onto the tokenized dataset by providing a dictionary of custom attributes to be added, which is formatted as loom_col_attr_name : desired_dataset_col_attr_name. For example, if the original .loom dataset has column attributes "cell_type" and "organ_major" and one would like to retain these attributes as labels in the tokenized dataset with the new names "cell_type" and "organ", respectively, the following custom attribute dictionary should be provided: {"cell_type": "cell_type", "organ_major": "organ"}.
| Additionally, if the original .loom file contains a cell column attribute called "filter_pass", this column will be used as a binary indicator of whether to include these cells in the tokenized data. All cells with "1" in this attribute will be tokenized, whereas the others will be excluded. One may use this column to indicate QC filtering or other criteria for selection for inclusion in the final tokenized dataset.
| If one's data is in other formats besides .loom or .h5ad, one can use the relevant tools (such as Anndata tools) to convert the file to a .loom or .h5ad format prior to running the transcriptome tokenizer.
"""
from __future__ import annotations
import logging
import pickle
import warnings
from pathlib import Path
from typing import Literal
import anndata as ad
import numpy as np
import scipy.sparse as sp
from datasets import Dataset
warnings.filterwarnings("ignore", message=".*The 'nopython' keyword.*") # noqa
import loompy as lp # noqa
logger = logging.getLogger(__name__)
GENE_MEDIAN_FILE = Path(__file__).parent / "gene_median_dictionary.pkl"
TOKEN_DICTIONARY_FILE = Path(__file__).parent / "token_dictionary.pkl"
def rank_genes(gene_vector, gene_tokens):
"""
Rank gene expression vector.
"""
# sort by median-scaled gene values
sorted_indices = np.argsort(-gene_vector)
return gene_tokens[sorted_indices]
def tokenize_cell(gene_vector, gene_tokens):
"""
Convert normalized gene expression vector to tokenized rank value encoding.
"""
# create array of gene vector with token indices
# mask undetected genes
nonzero_mask = np.nonzero(gene_vector)[0]
# rank by median-scaled gene values
return rank_genes(gene_vector[nonzero_mask], gene_tokens[nonzero_mask])
class TranscriptomeTokenizer:
def __init__(
self,
custom_attr_name_dict=None,
nproc=1,
chunk_size=512,
model_input_size=2048,
special_token=False,
gene_median_file=GENE_MEDIAN_FILE,
token_dictionary_file=TOKEN_DICTIONARY_FILE,
):
"""
Initialize tokenizer.
**Parameters:**
custom_attr_name_dict : None, dict
| Dictionary of custom attributes to be added to the dataset.
| Keys are the names of the attributes in the loom file.
| Values are the names of the attributes in the dataset.
nproc : int
| Number of processes to use for dataset mapping.
chunk_size : int = 512
| Chunk size for anndata tokenizer.
model_input_size: int = 2048
| Max input size of model to truncate input to.
special_token: bool = False
| Option to add CLS and SEP tokens
gene_median_file : Path
| Path to pickle file containing dictionary of non-zero median
| gene expression values across Genecorpus-30M.
token_dictionary_file : Path
| Path to pickle file containing token dictionary (Ensembl IDs:token).
"""
# dictionary of custom attributes {output dataset column name: input .loom column name}
self.custom_attr_name_dict = custom_attr_name_dict
# number of processes for dataset mapping
self.nproc = nproc
# chunk size for anndata tokenizer
self.chunk_size = chunk_size
# input size for tokenization
self.model_input_size = model_input_size
# add CLS and SEP tokens
self.special_token = special_token
# load dictionary of gene normalization factors
# (non-zero median value of expression across Genecorpus-30M)
with open(gene_median_file, "rb") as f:
self.gene_median_dict = pickle.load(f)
# load token dictionary (Ensembl IDs:token)
with open(token_dictionary_file, "rb") as f:
self.gene_token_dict = pickle.load(f)
# gene keys for full vocabulary
self.gene_keys = list(self.gene_median_dict.keys())
# protein-coding and miRNA gene list dictionary for selecting .loom rows for tokenization
self.genelist_dict = dict(zip(self.gene_keys, [True] * len(self.gene_keys)))
def tokenize_data(
self,
data_directory: Path | str,
output_directory: Path | str,
output_prefix: str,
file_format: Literal["loom", "h5ad"] = "loom",
use_generator: bool = False,
):
"""
Tokenize .loom files in data_directory and save as tokenized .dataset in output_directory.
**Parameters:**
data_directory : Path
| Path to directory containing loom files or anndata files
output_directory : Path
| Path to directory where tokenized data will be saved as .dataset
output_prefix : str
| Prefix for output .dataset
file_format : str
| Format of input files. Can be "loom" or "h5ad".
use_generator : bool
| Whether to use generator or dict for tokenization.
"""
tokenized_cells, cell_metadata = self.tokenize_files(
Path(data_directory), file_format
)
tokenized_dataset = self.create_dataset(
tokenized_cells,
cell_metadata,
use_generator=use_generator,
)
output_path = (Path(output_directory) / output_prefix).with_suffix(".dataset")
tokenized_dataset.save_to_disk(output_path)
def tokenize_files(
self, data_directory, file_format: Literal["loom", "h5ad"] = "loom"
):
tokenized_cells = []
if self.custom_attr_name_dict is not None:
cell_attr = [attr_key for attr_key in self.custom_attr_name_dict.keys()]
cell_metadata = {
attr_key: [] for attr_key in self.custom_attr_name_dict.values()
}
# loops through directories to tokenize .loom files
file_found = 0
# loops through directories to tokenize .loom or .h5ad files
tokenize_file_fn = (
self.tokenize_loom if file_format == "loom" else self.tokenize_anndata
)
for file_path in data_directory.glob(f"*.{file_format}"):
file_found = 1
print(f"Tokenizing {file_path}")
file_tokenized_cells, file_cell_metadata = tokenize_file_fn(file_path)
tokenized_cells += file_tokenized_cells
if self.custom_attr_name_dict is not None:
for k in cell_attr:
cell_metadata[self.custom_attr_name_dict[k]] += file_cell_metadata[
k
]
else:
cell_metadata = None
if file_found == 0:
logger.error(
f"No .{file_format} files found in directory {data_directory}."
)
raise
return tokenized_cells, cell_metadata
def tokenize_anndata(self, adata_file_path, target_sum=10_000):
adata = ad.read(adata_file_path, backed="r")
if self.custom_attr_name_dict is not None:
file_cell_metadata = {
attr_key: [] for attr_key in self.custom_attr_name_dict.keys()
}
coding_miRNA_loc = np.where(
[self.genelist_dict.get(i, False) for i in adata.var["ensembl_id"]]
)[0]
norm_factor_vector = np.array(
[
self.gene_median_dict[i]
for i in adata.var["ensembl_id"][coding_miRNA_loc]
]
)
coding_miRNA_ids = adata.var["ensembl_id"][coding_miRNA_loc]
coding_miRNA_tokens = np.array(
[self.gene_token_dict[i] for i in coding_miRNA_ids]
)
try:
_ = adata.obs["filter_pass"]
except KeyError:
var_exists = False
else:
var_exists = True
if var_exists:
filter_pass_loc = np.where([i == 1 for i in adata.obs["filter_pass"]])[0]
elif not var_exists:
print(
f"{adata_file_path} has no column attribute 'filter_pass'; tokenizing all cells."
)
filter_pass_loc = np.array([i for i in range(adata.shape[0])])
tokenized_cells = []
for i in range(0, len(filter_pass_loc), self.chunk_size):
idx = filter_pass_loc[i : i + self.chunk_size]
n_counts = adata[idx].obs["n_counts"].values[:, None]
X_view = adata[idx, coding_miRNA_loc].X
X_norm = X_view / n_counts * target_sum / norm_factor_vector
X_norm = sp.csr_matrix(X_norm)
tokenized_cells += [
rank_genes(X_norm[i].data, coding_miRNA_tokens[X_norm[i].indices])
for i in range(X_norm.shape[0])
]
# add custom attributes for subview to dict
if self.custom_attr_name_dict is not None:
for k in file_cell_metadata.keys():
file_cell_metadata[k] += adata[idx].obs[k].tolist()
else:
file_cell_metadata = None
return tokenized_cells, file_cell_metadata
def tokenize_loom(self, loom_file_path, target_sum=10_000):
if self.custom_attr_name_dict is not None:
file_cell_metadata = {
attr_key: [] for attr_key in self.custom_attr_name_dict.keys()
}
with lp.connect(str(loom_file_path)) as data:
# define coordinates of detected protein-coding or miRNA genes and vector of their normalization factors
coding_miRNA_loc = np.where(
[self.genelist_dict.get(i, False) for i in data.ra["ensembl_id"]]
)[0]
norm_factor_vector = np.array(
[
self.gene_median_dict[i]
for i in data.ra["ensembl_id"][coding_miRNA_loc]
]
)
coding_miRNA_ids = data.ra["ensembl_id"][coding_miRNA_loc]
coding_miRNA_tokens = np.array(
[self.gene_token_dict[i] for i in coding_miRNA_ids]
)
# define coordinates of cells passing filters for inclusion (e.g. QC)
try:
data.ca["filter_pass"]
except AttributeError:
var_exists = False
else:
var_exists = True
if var_exists:
filter_pass_loc = np.where([i == 1 for i in data.ca["filter_pass"]])[0]
elif not var_exists:
print(
f"{loom_file_path} has no column attribute 'filter_pass'; tokenizing all cells."
)
filter_pass_loc = np.array([i for i in range(data.shape[1])])
# scan through .loom files and tokenize cells
tokenized_cells = []
for _ix, _selection, view in data.scan(
items=filter_pass_loc, axis=1, batch_size=self.chunk_size
):
# select subview with protein-coding and miRNA genes
subview = view.view[coding_miRNA_loc, :]
# normalize by total counts per cell and multiply by 10,000 to allocate bits to precision
# and normalize by gene normalization factors
subview_norm_array = (
subview[:, :]
/ subview.ca.n_counts
* target_sum
/ norm_factor_vector[:, None]
)
# tokenize subview gene vectors
tokenized_cells += [
tokenize_cell(subview_norm_array[:, i], coding_miRNA_tokens)
for i in range(subview_norm_array.shape[1])
]
# add custom attributes for subview to dict
if self.custom_attr_name_dict is not None:
for k in file_cell_metadata.keys():
file_cell_metadata[k] += subview.ca[k].tolist()
else:
file_cell_metadata = None
return tokenized_cells, file_cell_metadata
def create_dataset(
self,
tokenized_cells,
cell_metadata,
use_generator=False,
keep_uncropped_input_ids=False,
):
print("Creating dataset.")
# create dict for dataset creation
dataset_dict = {"input_ids": tokenized_cells}
if self.custom_attr_name_dict is not None:
dataset_dict.update(cell_metadata)
# create dataset
if use_generator:
def dict_generator():
for i in range(len(tokenized_cells)):
yield {k: dataset_dict[k][i] for k in dataset_dict.keys()}
output_dataset = Dataset.from_generator(dict_generator, num_proc=self.nproc)
else:
output_dataset = Dataset.from_dict(dataset_dict)
def format_cell_features(example):
# Store original uncropped input_ids in separate feature
if keep_uncropped_input_ids:
example["input_ids_uncropped"] = example["input_ids"]
example["length_uncropped"] = len(example["input_ids"])
# Truncate/Crop input_ids to input size
if self.special_token:
example["input_ids"] = example["input_ids"][
0 : self.model_input_size - 2
] # truncate to leave space for CLS and SEP token
example["input_ids"] = np.insert(
example["input_ids"], 0, self.gene_token_dict.get("<cls>")
)
example["input_ids"] = np.insert(
example["input_ids"],
len(example["input_ids"]),
self.gene_token_dict.get("<sep>"),
)
else:
# Truncate/Crop input_ids to input size
example["input_ids"] = example["input_ids"][0 : self._model_input_size]
example["length"] = len(example["input_ids"])
return example
output_dataset_truncated = output_dataset.map(
format_cell_features, num_proc=self.nproc
)
return output_dataset_truncated
|