Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 164.44 +/- 115.97
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e463ef290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e463ef320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e463ef3b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e463ef440>", "_build": "<function ActorCriticPolicy._build at 0x7f7e463ef4d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7e463ef560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e463ef5f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7e463ef680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e463ef710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e463ef7a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e463ef830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7e463c5060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652903909.1026828, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0qkz0ftdK5k7qju1uiPjiKh4G7blvvNgAAgD8AAIA/M3ycvXtUrLhVCgm7bEVdtnJAgDu85yI6AACAPwAAgD8TUls+PRZJOsbrtTt1ZUc4JyqFPJ7fNTkAAIA/AACAP2CgNL4fI5W7zauVuyoWCLmPg9o8GIrdOQAAgD8AAIA/4FV3PtJTjrumIxW8FJQDOUic97zqA9o5AACAPwAAgD+AYaa97Gm/uaXA4zrad8U1b2SFujiFB7oAAIA/AACAP3XWhb6FgcE8DRJNuy4W4zmCqFC+xD6IOgAAgD8AAIA/ze2wvB/lk7mnPp27sFJQtmwTCTuOK8Q1AACAPwAAgD+w/oi+yJWwvPj5gTwre8q87f4UPmAroD0AAIA/AACAP5p+lb0UVpc5d9SNu6shmzgYd6o6WhApOQAAgD8AAIA/gCZGvoVXwTzLZ988krxbuxosWL7GDG08AACAPwAAgD/NUEy8KWwsutZmwjp8HC01i34mu5qt5LkAAIA/AACAP1r4ZD4N7wS985yQvD1JtLy3oWm+4u+UPQAAAAAAAAAAzWC2PcNBJ7rm7KK6BKU5tZqEsrq/s7o5AACAPwAAgD8ASrY94RqyuHrNObkBx4Y2tadTu/NrWjgAAIA/AACAP7O+ST32xAK6Ts6iu/Y/EjmXwZU7jOZHuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIH/gYrDjFHUCUhpRSlIwBbJRLm4wBdJRHQJzyc6Oo5xR1fZQoaAZoCWgPQwgwDcNHRE9hQJSGlFKUaBVN6ANoFkdAnPbKDPGACnV9lChoBmgJaA9DCBDqIoUyY2BAlIaUUpRoFU3oA2gWR0CdASBXS0BwdX2UKGgGaAloD0MIWyVYHM6yQUCUhpRSlGgVS/VoFkdAnQHr4zrNW3V9lChoBmgJaA9DCKWCiqpfOS3AlIaUUpRoFUvGaBZHQJ0DdSl3yI51fZQoaAZoCWgPQwhYyFwZVGJgQJSGlFKUaBVN6ANoFkdAnRo/mknCwnV9lChoBmgJaA9DCH6pnzeVlGBAlIaUUpRoFU3oA2gWR0CdHdyFPBSDdX2UKGgGaAloD0MIQbYsXxfOYECUhpRSlGgVTegDaBZHQJ0fJlAeJYV1fZQoaAZoCWgPQwiUE+0qpGJaQJSGlFKUaBVN6ANoFkdAnSCoexOclXV9lChoBmgJaA9DCGiwqfOosDVAlIaUUpRoFUuCaBZHQJ0h98fFJg91fZQoaAZoCWgPQwgO+WcG8ck0QJSGlFKUaBVNBAFoFkdAnSR+zyBkJHV9lChoBmgJaA9DCNjviXWqHV5AlIaUUpRoFU3oA2gWR0CdJfEhaC+UdX2UKGgGaAloD0MIM8UcBB0NBkCUhpRSlGgVS5doFkdAnSe9JOFg2XV9lChoBmgJaA9DCKIkJNI2OGNAlIaUUpRoFU3oA2gWR0CdKxRO1v2odX2UKGgGaAloD0MIc/ON6J7/Y0CUhpRSlGgVTegDaBZHQJ0sD/IbOu91fZQoaAZoCWgPQwjdQIF3ci1hQJSGlFKUaBVN6ANoFkdAnS3cD4gzQHV9lChoBmgJaA9DCPN1Gf7Tk0JAlIaUUpRoFUvIaBZHQJ0vJ2bG3nZ1fZQoaAZoCWgPQwjikXh5OucVQJSGlFKUaBVLtmgWR0CdL4NqgyuZdX2UKGgGaAloD0MIvcXDew50Y0CUhpRSlGgVTegDaBZHQJ0yJAjY7JZ1fZQoaAZoCWgPQwhiuhCrP8JYQJSGlFKUaBVN6ANoFkdAnTSRQBPsRnV9lChoBmgJaA9DCPkUAOMZZ1VAlIaUUpRoFU3oA2gWR0CdNpFFDv3KdX2UKGgGaAloD0MI1ZKOcrCXZkCUhpRSlGgVTegDaBZHQJ02xBD5TIh1fZQoaAZoCWgPQwiqfxDJkHFJQJSGlFKUaBVN6ANoFkdAnTc8TBZZCHV9lChoBmgJaA9DCKeU10roR19AlIaUUpRoFU3oA2gWR0CdTKxxDLKWdX2UKGgGaAloD0MIzH1yFCDYVUCUhpRSlGgVTegDaBZHQJ1NkLQXyiF1fZQoaAZoCWgPQwjsLlBSYMVeQJSGlFKUaBVN6ANoFkdAnWqS9EkSmXV9lChoBmgJaA9DCBlUG5wIhWRAlIaUUpRoFU3oA2gWR0CdbWd5IH1OdX2UKGgGaAloD0MIon2s4LdRYECUhpRSlGgVTegDaBZHQJ1vEnkT6BR1fZQoaAZoCWgPQwirs1pgj+BZQJSGlFKUaBVN6ANoFkdAnXWwQ176YXV9lChoBmgJaA9DCOiC+pY5qFVAlIaUUpRoFU3oA2gWR0CdeetnPE88dX2UKGgGaAloD0MI8DUEx2UEZkCUhpRSlGgVTegDaBZHQJ16/cVQAMl1fZQoaAZoCWgPQwhd4V0uYmFkQJSGlFKUaBVN6ANoFkdAnX0aW1MM7XV9lChoBmgJaA9DCIP26uOhpFRAlIaUUpRoFU3oA2gWR0Cdfou2Zy+6dX2UKGgGaAloD0MIVryReeSSX0CUhpRSlGgVTegDaBZHQJ1+5p/PPcB1fZQoaAZoCWgPQwizYU1lUd1kQJSGlFKUaBVN6ANoFkdAnYHKSs8xK3V9lChoBmgJaA9DCDbknxnE72VAlIaUUpRoFU3oA2gWR0CdhFbuMMqjdX2UKGgGaAloD0MIn3b4a7KKOUCUhpRSlGgVS6FoFkdAnYYcBuGbkXV9lChoBmgJaA9DCEoNbQA2UmFAlIaUUpRoFU3oA2gWR0CdhsaisXBQdX2UKGgGaAloD0MICr/Uz5sdV0CUhpRSlGgVTegDaBZHQJ2HBIwudwx1fZQoaAZoCWgPQwgjMqzijbVWQJSGlFKUaBVN6ANoFkdAnYeBplBhQXV9lChoBmgJaA9DCARauoLtPGFAlIaUUpRoFU3oA2gWR0Cdm8jLB9CvdX2UKGgGaAloD0MIKhxBKsVXWUCUhpRSlGgVTegDaBZHQJ2cqVdHDrJ1fZQoaAZoCWgPQwgqU8xB0GkxQJSGlFKUaBVLjGgWR0Cdt/VsUIszdX2UKGgGaAloD0MI8icqG1bwYUCUhpRSlGgVTegDaBZHQJ26PTx5LRN1fZQoaAZoCWgPQwi3f2WlSWEiwJSGlFKUaBVL1mgWR0CdvEPvKEFodX2UKGgGaAloD0MImkLnNXYWYECUhpRSlGgVTegDaBZHQJ29GXBxgiN1fZQoaAZoCWgPQwjLD1zlCWJdQJSGlFKUaBVN6ANoFkdAnb6gUg0TDnV9lChoBmgJaA9DCM4ckloo/F1AlIaUUpRoFU3oA2gWR0CdxPdiUgSwdX2UKGgGaAloD0MIlumXiLcdXUCUhpRSlGgVTegDaBZHQJ3IqlANXo11fZQoaAZoCWgPQwgWUKinj+guQJSGlFKUaBVLv2gWR0CdyLc8DB/JdX2UKGgGaAloD0MI+PpalxrLWUCUhpRSlGgVTegDaBZHQJ3JsPiDM/11fZQoaAZoCWgPQwi4WicuR6ZgQJSGlFKUaBVN6ANoFkdAnc1I9gWrO3V9lChoBmgJaA9DCIKsp1Zf3mRAlIaUUpRoFU3oA2gWR0CdzaU70WdmdX2UKGgGaAloD0MINQpJZvVCY0CUhpRSlGgVTegDaBZHQJ3QrxhDw6R1fZQoaAZoCWgPQwjCwd7EkJzRP5SGlFKUaBVLs2gWR0Cd0rKwIMScdX2UKGgGaAloD0MIFK+ytilxVECUhpRSlGgVTegDaBZHQJ3THIU8FIN1fZQoaAZoCWgPQwjJyi+DsZNhQJSGlFKUaBVN6ANoFkdAndSmATZg5XV9lChoBmgJaA9DCOTaUDFOuGNAlIaUUpRoFU3oA2gWR0Cd1U0Z3s5XdX2UKGgGaAloD0MINL3EWCYxYkCUhpRSlGgVTegDaBZHQJ3VgyfthNN1fZQoaAZoCWgPQwgYQPhQIvljQJSGlFKUaBVN6ANoFkdAndX7aAWi13V9lChoBmgJaA9DCJUrvMtFe2dAlIaUUpRoFU3oA2gWR0CeAnps41gqdX2UKGgGaAloD0MIu9IyUu9uYUCUhpRSlGgVTegDaBZHQJ4EWZ/kNnZ1fZQoaAZoCWgPQwg5tMh2PtxiQJSGlFKUaBVN6ANoFkdAngY8H0K7ZnV9lChoBmgJaA9DCKg5eZEJLmFAlIaUUpRoFU3oA2gWR0CeCL1og3cYdX2UKGgGaAloD0MI0nKgh9riQUCUhpRSlGgVS7toFkdAng2UYGdI5HV9lChoBmgJaA9DCMsuGFxzFlpAlIaUUpRoFU3oA2gWR0CeDmroW56MdX2UKGgGaAloD0MIiJ//HrzBXUCUhpRSlGgVTegDaBZHQJ4RxI4EOiF1fZQoaAZoCWgPQwhTliGOdYZiQJSGlFKUaBVN6ANoFkdAnhK0py6tknV9lChoBmgJaA9DCMHhBRGp3mVAlIaUUpRoFU3oA2gWR0CeFgFlTWGzdX2UKGgGaAloD0MI9S9JZYpoXUCUhpRSlGgVTegDaBZHQJ4WW7SRbKR1fZQoaAZoCWgPQwj3yVGAKJA4QJSGlFKUaBVL0GgWR0CeGH9Wp6yCdX2UKGgGaAloD0MIOrGH9rFvZUCUhpRSlGgVTegDaBZHQJ4Y9+7UXpJ1fZQoaAZoCWgPQwjfv3lx4nhaQJSGlFKUaBVN6ANoFkdAnhrs8HObAnV9lChoBmgJaA9DCLslOWBXB1tAlIaUUpRoFU3oA2gWR0CeG1QdjoZAdX2UKGgGaAloD0MIPEz75n7sYECUhpRSlGgVTegDaBZHQJ4cq7Ackt51fZQoaAZoCWgPQwiI9xxYjgFdQJSGlFKUaBVN6ANoFkdAnh0k+TvAoHV9lChoBmgJaA9DCBKJQsu6Q2FAlIaUUpRoFU3oA2gWR0CeHU6X0Gu+dX2UKGgGaAloD0MIsHCS5g8eYkCUhpRSlGgVTegDaBZHQJ4dqy9mHxl1fZQoaAZoCWgPQwjmzeFa7SlHQJSGlFKUaBVLu2gWR0CeHp6AvtdBdX2UKGgGaAloD0MIUYcVbvkCSECUhpRSlGgVS9hoFkdAnh/2ITGo73V9lChoBmgJaA9DCOjZrPpcgTjAlIaUUpRoFUvraBZHQJ4iqvTw2EV1fZQoaAZoCWgPQwj19XzNcnEkwJSGlFKUaBVL1GgWR0CeI73GXHBDdX2UKGgGaAloD0MIEOfhBKanYkCUhpRSlGgVTegDaBZHQJ5Kx0GNaQp1fZQoaAZoCWgPQwjuPsdHiwJhQJSGlFKUaBVN6ANoFkdAnkywYgq3E3V9lChoBmgJaA9DCD8Z48Ps61RAlIaUUpRoFU3oA2gWR0CeTwAMlTm5dX2UKGgGaAloD0MIxciSOZbIX0CUhpRSlGgVTegDaBZHQJ5Vi8g6ltV1fZQoaAZoCWgPQwhyMnGrIGYKQJSGlFKUaBVLw2gWR0CeWR97F85TdX2UKGgGaAloD0MINSpwsg3YYUCUhpRSlGgVTegDaBZHQJ5ZwPFvQ4V1fZQoaAZoCWgPQwhWLH5TWLlKQJSGlFKUaBVN6ANoFkdAnlrHY150KnV9lChoBmgJaA9DCPmf/N27B2NAlIaUUpRoFU3oA2gWR0CeYdMM7U5NdX2UKGgGaAloD0MIdv2C3bAQYUCUhpRSlGgVTegDaBZHQJ5k4L4N7Sl1fZQoaAZoCWgPQwikF7X71UFhQJSGlFKUaBVN6ANoFkdAnmcUMTewcHV9lChoBmgJaA9DCGlyMQbWo1VAlIaUUpRoFU3oA2gWR0CeZ8mV7hNudX2UKGgGaAloD0MIflaZKa02Y0CUhpRSlGgVTegDaBZHQJ5oENqgyuZ1fZQoaAZoCWgPQwjDuvHuyCliQJSGlFKUaBVN6ANoFkdAnmi4v38GcHV9lChoBmgJaA9DCDj5LTrZq2JAlIaUUpRoFU3oA2gWR0Ceai73wkPddX2UKGgGaAloD0MIpDZxcr/uZECUhpRSlGgVTegDaBZHQJ5r8Er5IpZ1fZQoaAZoCWgPQwjmQA+17ThiQJSGlFKUaBVN6ANoFkdAnm8ryYoiLXV9lChoBmgJaA9DCBb59UPsb2JAlIaUUpRoFU3oA2gWR0CecIlQdjoZdX2UKGgGaAloD0MIy4KJP4qGQ0CUhpRSlGgVS9VoFkdAnnNPL9uP3nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5f46ddbbf9d5c45856297a7a1fc427d399e540d342327ee9d0a92763a0ead8a
|
3 |
+
size 144024
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e463ef290>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e463ef320>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e463ef3b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e463ef440>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7e463ef4d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7e463ef560>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e463ef5f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7e463ef680>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e463ef710>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e463ef7a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e463ef830>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7e463c5060>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652903909.1026828,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0qkz0ftdK5k7qju1uiPjiKh4G7blvvNgAAgD8AAIA/M3ycvXtUrLhVCgm7bEVdtnJAgDu85yI6AACAPwAAgD8TUls+PRZJOsbrtTt1ZUc4JyqFPJ7fNTkAAIA/AACAP2CgNL4fI5W7zauVuyoWCLmPg9o8GIrdOQAAgD8AAIA/4FV3PtJTjrumIxW8FJQDOUic97zqA9o5AACAPwAAgD+AYaa97Gm/uaXA4zrad8U1b2SFujiFB7oAAIA/AACAP3XWhb6FgcE8DRJNuy4W4zmCqFC+xD6IOgAAgD8AAIA/ze2wvB/lk7mnPp27sFJQtmwTCTuOK8Q1AACAPwAAgD+w/oi+yJWwvPj5gTwre8q87f4UPmAroD0AAIA/AACAP5p+lb0UVpc5d9SNu6shmzgYd6o6WhApOQAAgD8AAIA/gCZGvoVXwTzLZ988krxbuxosWL7GDG08AACAPwAAgD/NUEy8KWwsutZmwjp8HC01i34mu5qt5LkAAIA/AACAP1r4ZD4N7wS985yQvD1JtLy3oWm+4u+UPQAAAAAAAAAAzWC2PcNBJ7rm7KK6BKU5tZqEsrq/s7o5AACAPwAAgD8ASrY94RqyuHrNObkBx4Y2tadTu/NrWjgAAIA/AACAP7O+ST32xAK6Ts6iu/Y/EjmXwZU7jOZHuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVbRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIH/gYrDjFHUCUhpRSlIwBbJRLm4wBdJRHQJzyc6Oo5xR1fZQoaAZoCWgPQwgwDcNHRE9hQJSGlFKUaBVN6ANoFkdAnPbKDPGACnV9lChoBmgJaA9DCBDqIoUyY2BAlIaUUpRoFU3oA2gWR0CdASBXS0BwdX2UKGgGaAloD0MIWyVYHM6yQUCUhpRSlGgVS/VoFkdAnQHr4zrNW3V9lChoBmgJaA9DCKWCiqpfOS3AlIaUUpRoFUvGaBZHQJ0DdSl3yI51fZQoaAZoCWgPQwhYyFwZVGJgQJSGlFKUaBVN6ANoFkdAnRo/mknCwnV9lChoBmgJaA9DCH6pnzeVlGBAlIaUUpRoFU3oA2gWR0CdHdyFPBSDdX2UKGgGaAloD0MIQbYsXxfOYECUhpRSlGgVTegDaBZHQJ0fJlAeJYV1fZQoaAZoCWgPQwiUE+0qpGJaQJSGlFKUaBVN6ANoFkdAnSCoexOclXV9lChoBmgJaA9DCGiwqfOosDVAlIaUUpRoFUuCaBZHQJ0h98fFJg91fZQoaAZoCWgPQwgO+WcG8ck0QJSGlFKUaBVNBAFoFkdAnSR+zyBkJHV9lChoBmgJaA9DCNjviXWqHV5AlIaUUpRoFU3oA2gWR0CdJfEhaC+UdX2UKGgGaAloD0MIM8UcBB0NBkCUhpRSlGgVS5doFkdAnSe9JOFg2XV9lChoBmgJaA9DCKIkJNI2OGNAlIaUUpRoFU3oA2gWR0CdKxRO1v2odX2UKGgGaAloD0MIc/ON6J7/Y0CUhpRSlGgVTegDaBZHQJ0sD/IbOu91fZQoaAZoCWgPQwjdQIF3ci1hQJSGlFKUaBVN6ANoFkdAnS3cD4gzQHV9lChoBmgJaA9DCPN1Gf7Tk0JAlIaUUpRoFUvIaBZHQJ0vJ2bG3nZ1fZQoaAZoCWgPQwjikXh5OucVQJSGlFKUaBVLtmgWR0CdL4NqgyuZdX2UKGgGaAloD0MIvcXDew50Y0CUhpRSlGgVTegDaBZHQJ0yJAjY7JZ1fZQoaAZoCWgPQwhiuhCrP8JYQJSGlFKUaBVN6ANoFkdAnTSRQBPsRnV9lChoBmgJaA9DCPkUAOMZZ1VAlIaUUpRoFU3oA2gWR0CdNpFFDv3KdX2UKGgGaAloD0MI1ZKOcrCXZkCUhpRSlGgVTegDaBZHQJ02xBD5TIh1fZQoaAZoCWgPQwiqfxDJkHFJQJSGlFKUaBVN6ANoFkdAnTc8TBZZCHV9lChoBmgJaA9DCKeU10roR19AlIaUUpRoFU3oA2gWR0CdTKxxDLKWdX2UKGgGaAloD0MIzH1yFCDYVUCUhpRSlGgVTegDaBZHQJ1NkLQXyiF1fZQoaAZoCWgPQwjsLlBSYMVeQJSGlFKUaBVN6ANoFkdAnWqS9EkSmXV9lChoBmgJaA9DCBlUG5wIhWRAlIaUUpRoFU3oA2gWR0CdbWd5IH1OdX2UKGgGaAloD0MIon2s4LdRYECUhpRSlGgVTegDaBZHQJ1vEnkT6BR1fZQoaAZoCWgPQwirs1pgj+BZQJSGlFKUaBVN6ANoFkdAnXWwQ176YXV9lChoBmgJaA9DCOiC+pY5qFVAlIaUUpRoFU3oA2gWR0CdeetnPE88dX2UKGgGaAloD0MI8DUEx2UEZkCUhpRSlGgVTegDaBZHQJ16/cVQAMl1fZQoaAZoCWgPQwhd4V0uYmFkQJSGlFKUaBVN6ANoFkdAnX0aW1MM7XV9lChoBmgJaA9DCIP26uOhpFRAlIaUUpRoFU3oA2gWR0Cdfou2Zy+6dX2UKGgGaAloD0MIVryReeSSX0CUhpRSlGgVTegDaBZHQJ1+5p/PPcB1fZQoaAZoCWgPQwizYU1lUd1kQJSGlFKUaBVN6ANoFkdAnYHKSs8xK3V9lChoBmgJaA9DCDbknxnE72VAlIaUUpRoFU3oA2gWR0CdhFbuMMqjdX2UKGgGaAloD0MIn3b4a7KKOUCUhpRSlGgVS6FoFkdAnYYcBuGbkXV9lChoBmgJaA9DCEoNbQA2UmFAlIaUUpRoFU3oA2gWR0CdhsaisXBQdX2UKGgGaAloD0MICr/Uz5sdV0CUhpRSlGgVTegDaBZHQJ2HBIwudwx1fZQoaAZoCWgPQwgjMqzijbVWQJSGlFKUaBVN6ANoFkdAnYeBplBhQXV9lChoBmgJaA9DCARauoLtPGFAlIaUUpRoFU3oA2gWR0Cdm8jLB9CvdX2UKGgGaAloD0MIKhxBKsVXWUCUhpRSlGgVTegDaBZHQJ2cqVdHDrJ1fZQoaAZoCWgPQwgqU8xB0GkxQJSGlFKUaBVLjGgWR0Cdt/VsUIszdX2UKGgGaAloD0MI8icqG1bwYUCUhpRSlGgVTegDaBZHQJ26PTx5LRN1fZQoaAZoCWgPQwi3f2WlSWEiwJSGlFKUaBVL1mgWR0CdvEPvKEFodX2UKGgGaAloD0MImkLnNXYWYECUhpRSlGgVTegDaBZHQJ29GXBxgiN1fZQoaAZoCWgPQwjLD1zlCWJdQJSGlFKUaBVN6ANoFkdAnb6gUg0TDnV9lChoBmgJaA9DCM4ckloo/F1AlIaUUpRoFU3oA2gWR0CdxPdiUgSwdX2UKGgGaAloD0MIlumXiLcdXUCUhpRSlGgVTegDaBZHQJ3IqlANXo11fZQoaAZoCWgPQwgWUKinj+guQJSGlFKUaBVLv2gWR0CdyLc8DB/JdX2UKGgGaAloD0MI+PpalxrLWUCUhpRSlGgVTegDaBZHQJ3JsPiDM/11fZQoaAZoCWgPQwi4WicuR6ZgQJSGlFKUaBVN6ANoFkdAnc1I9gWrO3V9lChoBmgJaA9DCIKsp1Zf3mRAlIaUUpRoFU3oA2gWR0CdzaU70WdmdX2UKGgGaAloD0MINQpJZvVCY0CUhpRSlGgVTegDaBZHQJ3QrxhDw6R1fZQoaAZoCWgPQwjCwd7EkJzRP5SGlFKUaBVLs2gWR0Cd0rKwIMScdX2UKGgGaAloD0MIFK+ytilxVECUhpRSlGgVTegDaBZHQJ3THIU8FIN1fZQoaAZoCWgPQwjJyi+DsZNhQJSGlFKUaBVN6ANoFkdAndSmATZg5XV9lChoBmgJaA9DCOTaUDFOuGNAlIaUUpRoFU3oA2gWR0Cd1U0Z3s5XdX2UKGgGaAloD0MINL3EWCYxYkCUhpRSlGgVTegDaBZHQJ3VgyfthNN1fZQoaAZoCWgPQwgYQPhQIvljQJSGlFKUaBVN6ANoFkdAndX7aAWi13V9lChoBmgJaA9DCJUrvMtFe2dAlIaUUpRoFU3oA2gWR0CeAnps41gqdX2UKGgGaAloD0MIu9IyUu9uYUCUhpRSlGgVTegDaBZHQJ4EWZ/kNnZ1fZQoaAZoCWgPQwg5tMh2PtxiQJSGlFKUaBVN6ANoFkdAngY8H0K7ZnV9lChoBmgJaA9DCKg5eZEJLmFAlIaUUpRoFU3oA2gWR0CeCL1og3cYdX2UKGgGaAloD0MI0nKgh9riQUCUhpRSlGgVS7toFkdAng2UYGdI5HV9lChoBmgJaA9DCMsuGFxzFlpAlIaUUpRoFU3oA2gWR0CeDmroW56MdX2UKGgGaAloD0MIiJ//HrzBXUCUhpRSlGgVTegDaBZHQJ4RxI4EOiF1fZQoaAZoCWgPQwhTliGOdYZiQJSGlFKUaBVN6ANoFkdAnhK0py6tknV9lChoBmgJaA9DCMHhBRGp3mVAlIaUUpRoFU3oA2gWR0CeFgFlTWGzdX2UKGgGaAloD0MI9S9JZYpoXUCUhpRSlGgVTegDaBZHQJ4WW7SRbKR1fZQoaAZoCWgPQwj3yVGAKJA4QJSGlFKUaBVL0GgWR0CeGH9Wp6yCdX2UKGgGaAloD0MIOrGH9rFvZUCUhpRSlGgVTegDaBZHQJ4Y9+7UXpJ1fZQoaAZoCWgPQwjfv3lx4nhaQJSGlFKUaBVN6ANoFkdAnhrs8HObAnV9lChoBmgJaA9DCLslOWBXB1tAlIaUUpRoFU3oA2gWR0CeG1QdjoZAdX2UKGgGaAloD0MIPEz75n7sYECUhpRSlGgVTegDaBZHQJ4cq7Ackt51fZQoaAZoCWgPQwiI9xxYjgFdQJSGlFKUaBVN6ANoFkdAnh0k+TvAoHV9lChoBmgJaA9DCBKJQsu6Q2FAlIaUUpRoFU3oA2gWR0CeHU6X0Gu+dX2UKGgGaAloD0MIsHCS5g8eYkCUhpRSlGgVTegDaBZHQJ4dqy9mHxl1fZQoaAZoCWgPQwjmzeFa7SlHQJSGlFKUaBVLu2gWR0CeHp6AvtdBdX2UKGgGaAloD0MIUYcVbvkCSECUhpRSlGgVS9hoFkdAnh/2ITGo73V9lChoBmgJaA9DCOjZrPpcgTjAlIaUUpRoFUvraBZHQJ4iqvTw2EV1fZQoaAZoCWgPQwj19XzNcnEkwJSGlFKUaBVL1GgWR0CeI73GXHBDdX2UKGgGaAloD0MIEOfhBKanYkCUhpRSlGgVTegDaBZHQJ5Kx0GNaQp1fZQoaAZoCWgPQwjuPsdHiwJhQJSGlFKUaBVN6ANoFkdAnkywYgq3E3V9lChoBmgJaA9DCD8Z48Ps61RAlIaUUpRoFU3oA2gWR0CeTwAMlTm5dX2UKGgGaAloD0MIxciSOZbIX0CUhpRSlGgVTegDaBZHQJ5Vi8g6ltV1fZQoaAZoCWgPQwhyMnGrIGYKQJSGlFKUaBVLw2gWR0CeWR97F85TdX2UKGgGaAloD0MINSpwsg3YYUCUhpRSlGgVTegDaBZHQJ5ZwPFvQ4V1fZQoaAZoCWgPQwhWLH5TWLlKQJSGlFKUaBVN6ANoFkdAnlrHY150KnV9lChoBmgJaA9DCPmf/N27B2NAlIaUUpRoFU3oA2gWR0CeYdMM7U5NdX2UKGgGaAloD0MIdv2C3bAQYUCUhpRSlGgVTegDaBZHQJ5k4L4N7Sl1fZQoaAZoCWgPQwikF7X71UFhQJSGlFKUaBVN6ANoFkdAnmcUMTewcHV9lChoBmgJaA9DCGlyMQbWo1VAlIaUUpRoFU3oA2gWR0CeZ8mV7hNudX2UKGgGaAloD0MIflaZKa02Y0CUhpRSlGgVTegDaBZHQJ5oENqgyuZ1fZQoaAZoCWgPQwjDuvHuyCliQJSGlFKUaBVN6ANoFkdAnmi4v38GcHV9lChoBmgJaA9DCDj5LTrZq2JAlIaUUpRoFU3oA2gWR0Ceai73wkPddX2UKGgGaAloD0MIpDZxcr/uZECUhpRSlGgVTegDaBZHQJ5r8Er5IpZ1fZQoaAZoCWgPQwjmQA+17ThiQJSGlFKUaBVN6ANoFkdAnm8ryYoiLXV9lChoBmgJaA9DCBb59UPsb2JAlIaUUpRoFU3oA2gWR0CecIlQdjoZdX2UKGgGaAloD0MIy4KJP4qGQ0CUhpRSlGgVS9VoFkdAnnNPL9uP3nVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9209c91856f0c8a91c54fc4876ea4f1f38f77b5fcf290663b7f05aab2e3d7a0b
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4988ecb331f8e2c618b7152b316690adc29f4022b9f743e59b990bb06875564f
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b83aa22b62e9fa773f32f3e1e3d846a05f64c23f3f26b9cb476b7a8ad07a82cf
|
3 |
+
size 236332
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 164.43640362430824, "std_reward": 115.96697951988605, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-18T20:29:16.576064"}
|