File size: 8,580 Bytes
27393ce 24790fd 27393ce 24790fd 27393ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from transformers import GPT2LMHeadModel, AutoTokenizer
from transformers import AdamW, get_scheduler, set_seed
from datasets import load_dataset
from accelerate import Accelerator
import datasets, transformers
from huggingface_hub import Repository
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from torch.utils.tensorboard import SummaryWriter
from argparse import Namespace
import torch
import logging
import wandb
class ConstantLengthDataset(IterableDataset):
def __init__(self, tokenizer, dataset, seq_length=1024,
num_of_sequences=1024, chars_per_token=3.6):
self.tokenizer = tokenizer
self.concat_token_id = tokenizer.bos_token_id
self.dataset = dataset
self.seq_length = seq_length
self.input_characters = seq_length * chars_per_token * num_of_sequences
self.epoch = 0
def __iter__(self):
iterator = iter(self.dataset)
more_examples = True
while more_examples:
buffer, buffer_len = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(iterator)['content'])
buffer_len += len(buffer[-1])
except StopIteration:
iterator = iter(self.dataset)
self.epoch += 1
logger.info(f"Dataset epoch: {self.epoch}")
tokenized_inputs = tokenizer(buffer, truncation=False)['input_ids']
all_token_ids = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id])
for i in range(0, len(all_token_ids), self.seq_length):
input_ids = all_token_ids[i : i + self.seq_length]
if len(input_ids) == self.seq_length:
yield torch.tensor(input_ids)
def setup_logging(project_name):
logger = logging.getLogger(__name__)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, handlers=[
logging.FileHandler(f"log/debug_{accelerator.process_index}.log"),
logging.StreamHandler()])
if accelerator.is_main_process: # we only want to setup logging once
wandb.init(project=project_name, config=args)
run_name = wandb.run.name
tb_writer = SummaryWriter()
tb_writer.add_hparams(vars(args), {'0': 0})
logger.setLevel(logging.INFO)
datasets.utils.logging.set_verbosity_info()
transformers.utils.logging.set_verbosity_info()
else:
tb_writer = None
run_name = ''
logger.setLevel(logging.ERROR)
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
return logger, tb_writer, run_name
def create_dataloaders(dataset_name, args):
ds_kwargs = {"streaming":True}
train_data = load_dataset(dataset_name+'-train', split='train', **ds_kwargs)
train_data = train_data.shuffle(buffer_size=args.shuffle_buffer,
seed=args.seed)
valid_data = load_dataset(dataset_name+'-valid', split="train", **ds_kwargs)
train_dataset = ConstantLengthDataset(tokenizer, train_data,
seq_length=args.seq_length)
valid_dataset = ConstantLengthDataset(tokenizer, valid_data,
seq_length=args.seq_length)
train_dataloader=DataLoader(train_dataset, batch_size=args.train_batch_size)
eval_dataloader=DataLoader(valid_dataset, batch_size=args.valid_batch_size)
return train_dataloader, eval_dataloader
def get_grouped_params(model, args, no_decay=["bias", "LayerNorm.weight"]):
params_with_wd, params_without_wd = [], []
for n, p in model.named_parameters():
if any(nd in n for nd in no_decay): params_without_wd.append(p)
else: params_with_wd.append(p)
return [{'params': params_with_wd, 'weight_decay': args.weight_decay},
{'params': params_without_wd, 'weight_decay': 0.0}]
def log_metrics(step, metrics):
logger.info(f"Step {step}: {metrics}")
if accelerator.is_main_process:
wandb.log(metrics)
[tb_writer.add_scalar(k, v, step) for k, v in metrics.items()]
def evaluate(args):
model.eval()
losses = []
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(batch, labels=batch)
loss = outputs.loss.repeat(args.valid_batch_size)
losses.append(accelerator.gather(loss))
if args.max_eval_steps > 0 and step >= args.max_eval_steps: break
loss = torch.mean(torch.cat(losses))
try: perplexity = torch.exp(loss)
except OverflowError: perplexity = float("inf")
return loss.item(), perplexity.item()
# Accelerator
accelerator = Accelerator()
acc_state = {str(k): str(v) for k, v in accelerator.state.__dict__.items()}
# Hyperparameters
project_name = 'lvwerra/codeparrot-small'
dataset_name = '../codeparrot-clean'
config = {"train_batch_size": 12,
"valid_batch_size": 12,
"weight_decay": 0.1,
"shuffle_buffer": 1_000,
"learning_rate": 5e-4,
"lr_scheduler_type": "cosine",
"num_warmup_steps": 2_000,
"gradient_accumulation_steps": 1,
"gradient_checkpointing": False,
"max_train_steps": 150_000,
"max_eval_steps": -1,
"seq_length": 1024,
"seed": 1,
"save_checkpoint_steps": 15_000}
args = Namespace(**config, **acc_state)
samples_per_step = accelerator.state.num_processes * args.train_batch_size
set_seed(args.seed)
# Logging
logger, tb_writer, run_name = setup_logging(project_name.split("/")[1])
logger.info(accelerator.state)
# Load model and tokenizer
if accelerator.is_main_process:
hf_repo = Repository("./", clone_from=project_name, revision=run_name)
model = GPT2LMHeadModel.from_pretrained("./")
if args.gradient_checkpointing:
model.gradient_checkpointing_enable()
tokenizer = AutoTokenizer.from_pretrained("./")
# Load dataset and dataloader
train_dataloader, eval_dataloader = create_dataloaders(dataset_name, args)
# Prepare the optimizer and learning rate scheduler
optimizer = AdamW(get_grouped_params(model, args), lr=args.learning_rate)
lr_scheduler = get_scheduler(name=args.lr_scheduler_type, optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,)
def get_lr(): return optimizer.param_groups[0]['lr']
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader)
# Train model
model.train()
completed_steps = 0
for step, batch in enumerate(train_dataloader, start=1):
loss = model(batch, labels=batch, use_cache=False).loss
log_metrics(step, {'lr': get_lr(), 'samples': step*samples_per_step,
'steps': completed_steps, 'loss/train': loss.item()})
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0:
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
completed_steps += 1
if step % args.save_checkpoint_steps == 0:
logger.info('Evaluating and saving model checkpoint')
eval_loss, perplexity = evaluate(args)
log_metrics(step, {'loss/eval': eval_loss, 'perplexity': perplexity})
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained("./", save_function=accelerator.save)
if accelerator.is_main_process:
hf_repo.push_to_hub(commit_message=f'step {step}')
model.train()
if completed_steps >= args.max_train_steps:
break
# Evaluate and save the last checkpoint
logger.info('Evaluating and saving model after training')
eval_loss, perplexity = evaluate(args)
log_metrics(step, {'loss/eval': eval_loss, 'perplexity': perplexity})
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained("./", save_function=accelerator.save)
if accelerator.is_main_process:
hf_repo.push_to_hub(commit_message=f'final model') |