vwxyzjn commited on
Commit
8e3003a
1 Parent(s): a1d84e7

pushing model

Browse files
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - Acrobot-v1
4
+ - deep-reinforcement-learning
5
+ - reinforcement-learning
6
+ - custom-implementation
7
+ library_name: cleanrl
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Acrobot-v1
16
+ type: Acrobot-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -96.80 +/- 21.87
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # (CleanRL) **DQN** Agent Playing **Acrobot-v1**
25
+
26
+ This is a trained model of a DQN agent playing Acrobot-v1.
27
+ The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
28
+ found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn.py).
29
+
30
+ ## Command to reproduce the training
31
+
32
+ ```bash
33
+ curl -OL https://huggingface.co/cleanrl/Acrobot-v1-dqn-seed1/raw/main/dqn.py
34
+ curl -OL https://huggingface.co/cleanrl/Acrobot-v1-dqn-seed1/raw/main/pyproject.toml
35
+ curl -OL https://huggingface.co/cleanrl/Acrobot-v1-dqn-seed1/raw/main/poetry.lock
36
+ poetry install --all-extras
37
+ python dqn.py --cuda False --track --capture-video --save-model --upload-model --hf-entity cleanrl --env-id Acrobot-v1 --seed 1
38
+ ```
39
+
40
+ # Hyperparameters
41
+ ```python
42
+ {'batch_size': 128,
43
+ 'buffer_size': 10000,
44
+ 'capture_video': True,
45
+ 'cuda': False,
46
+ 'end_e': 0.05,
47
+ 'env_id': 'Acrobot-v1',
48
+ 'exp_name': 'dqn',
49
+ 'exploration_fraction': 0.5,
50
+ 'gamma': 0.99,
51
+ 'hf_entity': 'cleanrl',
52
+ 'learning_rate': 0.00025,
53
+ 'learning_starts': 10000,
54
+ 'save_model': True,
55
+ 'seed': 1,
56
+ 'start_e': 1,
57
+ 'target_network_frequency': 500,
58
+ 'torch_deterministic': True,
59
+ 'total_timesteps': 500000,
60
+ 'track': True,
61
+ 'train_frequency': 10,
62
+ 'upload_model': True,
63
+ 'wandb_entity': None,
64
+ 'wandb_project_name': 'cleanRL'}
65
+ ```
66
+
dqn.cleanrl_model ADDED
Binary file (47.1 kB). View file
 
dqn.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/dqn/#dqnpy
2
+ import argparse
3
+ import os
4
+ import random
5
+ import time
6
+ from distutils.util import strtobool
7
+
8
+ import gym
9
+ import numpy as np
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ import torch.optim as optim
14
+ from stable_baselines3.common.buffers import ReplayBuffer
15
+ from torch.utils.tensorboard import SummaryWriter
16
+
17
+
18
+ def parse_args():
19
+ # fmt: off
20
+ parser = argparse.ArgumentParser()
21
+ parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
22
+ help="the name of this experiment")
23
+ parser.add_argument("--seed", type=int, default=1,
24
+ help="seed of the experiment")
25
+ parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
26
+ help="if toggled, `torch.backends.cudnn.deterministic=False`")
27
+ parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
28
+ help="if toggled, cuda will be enabled by default")
29
+ parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
30
+ help="if toggled, this experiment will be tracked with Weights and Biases")
31
+ parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
32
+ help="the wandb's project name")
33
+ parser.add_argument("--wandb-entity", type=str, default=None,
34
+ help="the entity (team) of wandb's project")
35
+ parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
36
+ help="whether to capture videos of the agent performances (check out `videos` folder)")
37
+ parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
38
+ help="whether to save model into the `runs/{run_name}` folder")
39
+ parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
40
+ help="whether to upload the saved model to huggingface")
41
+ parser.add_argument("--hf-entity", type=str, default="",
42
+ help="the user or org name of the model repository from the Hugging Face Hub")
43
+
44
+ # Algorithm specific arguments
45
+ parser.add_argument("--env-id", type=str, default="CartPole-v1",
46
+ help="the id of the environment")
47
+ parser.add_argument("--total-timesteps", type=int, default=500000,
48
+ help="total timesteps of the experiments")
49
+ parser.add_argument("--learning-rate", type=float, default=2.5e-4,
50
+ help="the learning rate of the optimizer")
51
+ parser.add_argument("--buffer-size", type=int, default=10000,
52
+ help="the replay memory buffer size")
53
+ parser.add_argument("--gamma", type=float, default=0.99,
54
+ help="the discount factor gamma")
55
+ parser.add_argument("--target-network-frequency", type=int, default=500,
56
+ help="the timesteps it takes to update the target network")
57
+ parser.add_argument("--batch-size", type=int, default=128,
58
+ help="the batch size of sample from the reply memory")
59
+ parser.add_argument("--start-e", type=float, default=1,
60
+ help="the starting epsilon for exploration")
61
+ parser.add_argument("--end-e", type=float, default=0.05,
62
+ help="the ending epsilon for exploration")
63
+ parser.add_argument("--exploration-fraction", type=float, default=0.5,
64
+ help="the fraction of `total-timesteps` it takes from start-e to go end-e")
65
+ parser.add_argument("--learning-starts", type=int, default=10000,
66
+ help="timestep to start learning")
67
+ parser.add_argument("--train-frequency", type=int, default=10,
68
+ help="the frequency of training")
69
+ args = parser.parse_args()
70
+ # fmt: on
71
+ return args
72
+
73
+
74
+ def make_env(env_id, seed, idx, capture_video, run_name):
75
+ def thunk():
76
+ env = gym.make(env_id)
77
+ env = gym.wrappers.RecordEpisodeStatistics(env)
78
+ if capture_video:
79
+ if idx == 0:
80
+ env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
81
+ env.seed(seed)
82
+ env.action_space.seed(seed)
83
+ env.observation_space.seed(seed)
84
+ return env
85
+
86
+ return thunk
87
+
88
+
89
+ # ALGO LOGIC: initialize agent here:
90
+ class QNetwork(nn.Module):
91
+ def __init__(self, env):
92
+ super().__init__()
93
+ self.network = nn.Sequential(
94
+ nn.Linear(np.array(env.single_observation_space.shape).prod(), 120),
95
+ nn.ReLU(),
96
+ nn.Linear(120, 84),
97
+ nn.ReLU(),
98
+ nn.Linear(84, env.single_action_space.n),
99
+ )
100
+
101
+ def forward(self, x):
102
+ return self.network(x)
103
+
104
+
105
+ def linear_schedule(start_e: float, end_e: float, duration: int, t: int):
106
+ slope = (end_e - start_e) / duration
107
+ return max(slope * t + start_e, end_e)
108
+
109
+
110
+ if __name__ == "__main__":
111
+ args = parse_args()
112
+ run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
113
+ if args.track:
114
+ import wandb
115
+
116
+ wandb.init(
117
+ project=args.wandb_project_name,
118
+ entity=args.wandb_entity,
119
+ sync_tensorboard=True,
120
+ config=vars(args),
121
+ name=run_name,
122
+ monitor_gym=True,
123
+ save_code=True,
124
+ )
125
+ writer = SummaryWriter(f"runs/{run_name}")
126
+ writer.add_text(
127
+ "hyperparameters",
128
+ "|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
129
+ )
130
+
131
+ # TRY NOT TO MODIFY: seeding
132
+ random.seed(args.seed)
133
+ np.random.seed(args.seed)
134
+ torch.manual_seed(args.seed)
135
+ torch.backends.cudnn.deterministic = args.torch_deterministic
136
+
137
+ device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
138
+
139
+ # env setup
140
+ envs = gym.vector.SyncVectorEnv([make_env(args.env_id, args.seed, 0, args.capture_video, run_name)])
141
+ assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
142
+
143
+ q_network = QNetwork(envs).to(device)
144
+ optimizer = optim.Adam(q_network.parameters(), lr=args.learning_rate)
145
+ target_network = QNetwork(envs).to(device)
146
+ target_network.load_state_dict(q_network.state_dict())
147
+
148
+ rb = ReplayBuffer(
149
+ args.buffer_size,
150
+ envs.single_observation_space,
151
+ envs.single_action_space,
152
+ device,
153
+ handle_timeout_termination=True,
154
+ )
155
+ start_time = time.time()
156
+
157
+ # TRY NOT TO MODIFY: start the game
158
+ obs = envs.reset()
159
+ for global_step in range(args.total_timesteps):
160
+ # ALGO LOGIC: put action logic here
161
+ epsilon = linear_schedule(args.start_e, args.end_e, args.exploration_fraction * args.total_timesteps, global_step)
162
+ if random.random() < epsilon:
163
+ actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)])
164
+ else:
165
+ q_values = q_network(torch.Tensor(obs).to(device))
166
+ actions = torch.argmax(q_values, dim=1).cpu().numpy()
167
+
168
+ # TRY NOT TO MODIFY: execute the game and log data.
169
+ next_obs, rewards, dones, infos = envs.step(actions)
170
+
171
+ # TRY NOT TO MODIFY: record rewards for plotting purposes
172
+ for info in infos:
173
+ if "episode" in info.keys():
174
+ print(f"global_step={global_step}, episodic_return={info['episode']['r']}")
175
+ writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
176
+ writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)
177
+ writer.add_scalar("charts/epsilon", epsilon, global_step)
178
+ break
179
+
180
+ # TRY NOT TO MODIFY: save data to reply buffer; handle `terminal_observation`
181
+ real_next_obs = next_obs.copy()
182
+ for idx, d in enumerate(dones):
183
+ if d:
184
+ real_next_obs[idx] = infos[idx]["terminal_observation"]
185
+ rb.add(obs, real_next_obs, actions, rewards, dones, infos)
186
+
187
+ # TRY NOT TO MODIFY: CRUCIAL step easy to overlook
188
+ obs = next_obs
189
+
190
+ # ALGO LOGIC: training.
191
+ if global_step > args.learning_starts:
192
+ if global_step % args.train_frequency == 0:
193
+ data = rb.sample(args.batch_size)
194
+ with torch.no_grad():
195
+ target_max, _ = target_network(data.next_observations).max(dim=1)
196
+ td_target = data.rewards.flatten() + args.gamma * target_max * (1 - data.dones.flatten())
197
+ old_val = q_network(data.observations).gather(1, data.actions).squeeze()
198
+ loss = F.mse_loss(td_target, old_val)
199
+
200
+ if global_step % 100 == 0:
201
+ writer.add_scalar("losses/td_loss", loss, global_step)
202
+ writer.add_scalar("losses/q_values", old_val.mean().item(), global_step)
203
+ print("SPS:", int(global_step / (time.time() - start_time)))
204
+ writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
205
+
206
+ # optimize the model
207
+ optimizer.zero_grad()
208
+ loss.backward()
209
+ optimizer.step()
210
+
211
+ # update the target network
212
+ if global_step % args.target_network_frequency == 0:
213
+ target_network.load_state_dict(q_network.state_dict())
214
+
215
+ if args.save_model:
216
+ model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
217
+ torch.save(q_network.state_dict(), model_path)
218
+ print(f"model saved to {model_path}")
219
+ from cleanrl_utils.evals.dqn_eval import evaluate
220
+
221
+ episodic_returns = evaluate(
222
+ model_path,
223
+ make_env,
224
+ args.env_id,
225
+ eval_episodes=10,
226
+ run_name=f"{run_name}-eval",
227
+ Model=QNetwork,
228
+ device=device,
229
+ epsilon=0.05,
230
+ )
231
+ for idx, episodic_return in enumerate(episodic_returns):
232
+ writer.add_scalar("eval/episodic_return", episodic_return, idx)
233
+
234
+ if args.upload_model:
235
+ from cleanrl_utils.huggingface import push_to_hub
236
+
237
+ repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
238
+ repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
239
+ push_to_hub(args, episodic_returns, repo_id, "DQN", f"runs/{run_name}", f"videos/{run_name}-eval")
240
+
241
+ envs.close()
242
+ writer.close()
events.out.tfevents.1671078997.pop-os.341327.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c272150ccdf89354d9caf9ba0b1f905d37d147c8952b8d556748a490353d2cc
3
+ size 1542738
poetry.lock ADDED
The diff for this file is too large to render. See raw diff
 
pyproject.toml ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.poetry]
2
+ name = "cleanrl-test"
3
+ version = "1.1.0"
4
+ description = "High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features"
5
+ authors = ["Costa Huang <[email protected]>"]
6
+ packages = [
7
+ { include = "cleanrl" },
8
+ { include = "cleanrl_utils" },
9
+ ]
10
+ keywords = ["reinforcement", "machine", "learning", "research"]
11
+ license="MIT"
12
+ readme = "README.md"
13
+
14
+ [tool.poetry.dependencies]
15
+ python = ">=3.7.1,<3.10"
16
+ tensorboard = "^2.10.0"
17
+ wandb = "^0.13.6"
18
+ gym = "0.23.1"
19
+ torch = ">=1.12.1"
20
+ stable-baselines3 = "1.2.0"
21
+ gymnasium = "^0.26.3"
22
+ moviepy = "^1.0.3"
23
+ pygame = "2.1.0"
24
+ huggingface-hub = "^0.11.1"
25
+
26
+ ale-py = {version = "0.7.4", optional = true}
27
+ AutoROM = {extras = ["accept-rom-license"], version = "^0.4.2"}
28
+ opencv-python = {version = "^4.6.0.66", optional = true}
29
+ pybullet = {version = "3.1.8", optional = true}
30
+ procgen = {version = "^0.10.7", optional = true}
31
+ pytest = {version = "^7.1.3", optional = true}
32
+ mujoco = {version = "^2.2", optional = true}
33
+ imageio = {version = "^2.14.1", optional = true}
34
+ free-mujoco-py = {version = "^2.1.6", optional = true}
35
+ mkdocs-material = {version = "^8.4.3", optional = true}
36
+ markdown-include = {version = "^0.7.0", optional = true}
37
+ jax = {version = "^0.3.17", optional = true}
38
+ jaxlib = {version = "^0.3.15", optional = true}
39
+ flax = {version = "^0.6.0", optional = true}
40
+ optuna = {version = "^3.0.1", optional = true}
41
+ optuna-dashboard = {version = "^0.7.2", optional = true}
42
+ rich = {version = "<12.0", optional = true}
43
+ envpool = {version = "^0.6.4", optional = true}
44
+ PettingZoo = {version = "1.18.1", optional = true}
45
+ SuperSuit = {version = "3.4.0", optional = true}
46
+ multi-agent-ale-py = {version = "0.1.11", optional = true}
47
+ boto3 = {version = "^1.24.70", optional = true}
48
+ awscli = {version = "^1.25.71", optional = true}
49
+ shimmy = {version = "^0.1.0", optional = true}
50
+ dm-control = {version = "^1.0.8", optional = true}
51
+
52
+ [tool.poetry.group.dev.dependencies]
53
+ pre-commit = "^2.20.0"
54
+
55
+ [tool.poetry.group.atari]
56
+ optional = true
57
+ [tool.poetry.group.atari.dependencies]
58
+ ale-py = "0.7.4"
59
+ AutoROM = {extras = ["accept-rom-license"], version = "^0.4.2"}
60
+ opencv-python = "^4.6.0.66"
61
+
62
+ [tool.poetry.group.pybullet]
63
+ optional = true
64
+ [tool.poetry.group.pybullet.dependencies]
65
+ pybullet = "3.1.8"
66
+
67
+ [tool.poetry.group.procgen]
68
+ optional = true
69
+ [tool.poetry.group.procgen.dependencies]
70
+ procgen = "^0.10.7"
71
+
72
+ [tool.poetry.group.pytest]
73
+ optional = true
74
+ [tool.poetry.group.pytest.dependencies]
75
+ pytest = "^7.1.3"
76
+
77
+ [tool.poetry.group.mujoco]
78
+ optional = true
79
+ [tool.poetry.group.mujoco.dependencies]
80
+ mujoco = "^2.2"
81
+ imageio = "^2.14.1"
82
+
83
+ [tool.poetry.group.mujoco_py]
84
+ optional = true
85
+ [tool.poetry.group.mujoco_py.dependencies]
86
+ free-mujoco-py = "^2.1.6"
87
+
88
+ [tool.poetry.group.docs]
89
+ optional = true
90
+ [tool.poetry.group.docs.dependencies]
91
+ mkdocs-material = "^8.4.3"
92
+ markdown-include = "^0.7.0"
93
+
94
+ [tool.poetry.group.jax]
95
+ optional = true
96
+ [tool.poetry.group.jax.dependencies]
97
+ jax = "^0.3.17"
98
+ jaxlib = "^0.3.15"
99
+ flax = "^0.6.0"
100
+
101
+ [tool.poetry.group.optuna]
102
+ optional = true
103
+ [tool.poetry.group.optuna.dependencies]
104
+ optuna = "^3.0.1"
105
+ optuna-dashboard = "^0.7.2"
106
+ rich = "<12.0"
107
+
108
+ [tool.poetry.group.envpool]
109
+ optional = true
110
+ [tool.poetry.group.envpool.dependencies]
111
+ envpool = "^0.6.4"
112
+
113
+ [tool.poetry.group.pettingzoo]
114
+ optional = true
115
+ [tool.poetry.group.pettingzoo.dependencies]
116
+ PettingZoo = "1.18.1"
117
+ SuperSuit = "3.4.0"
118
+ multi-agent-ale-py = "0.1.11"
119
+
120
+ [tool.poetry.group.cloud]
121
+ optional = true
122
+ [tool.poetry.group.cloud.dependencies]
123
+ boto3 = "^1.24.70"
124
+ awscli = "^1.25.71"
125
+
126
+ [tool.poetry.group.isaacgym]
127
+ optional = true
128
+ [tool.poetry.group.isaacgym.dependencies]
129
+ isaacgymenvs = {git = "https://github.com/vwxyzjn/IsaacGymEnvs.git", rev = "poetry"}
130
+ isaacgym = {path = "cleanrl/ppo_continuous_action_isaacgym/isaacgym", develop = true}
131
+
132
+ [tool.poetry.group.dm_control]
133
+ optional = true
134
+ [tool.poetry.group.dm_control.dependencies]
135
+ shimmy = "^0.1.0"
136
+ dm-control = "^1.0.8"
137
+ mujoco = "^2.2"
138
+
139
+ [build-system]
140
+ requires = ["poetry-core"]
141
+ build-backend = "poetry.core.masonry.api"
142
+
143
+ [tool.poetry.extras]
144
+ atari = ["ale-py", "AutoROM", "opencv-python"]
145
+ pybullet = ["pybullet"]
146
+ procgen = ["procgen"]
147
+ plot = ["pandas", "seaborn"]
148
+ spyder = ["spyder"]
149
+ pytest = ["pytest"]
150
+ mujoco = ["mujoco", "imageio"]
151
+ mujoco_py = ["free-mujoco-py"]
152
+ jax = ["jax", "jaxlib", "flax"]
153
+ docs = ["mkdocs-material", "markdown-include"]
154
+ envpool = ["envpool"]
155
+ optuna = ["optuna", "optuna-dashboard", "rich"]
156
+ pettingzoo = ["PettingZoo", "SuperSuit", "multi-agent-ale-py"]
157
+ cloud = ["boto3", "awscli"]
158
+ dm_control = ["shimmy", "dm-control", "mujoco"]
replay.mp4 ADDED
Binary file (60.4 kB). View file
 
videos/Acrobot-v1__dqn__1__1671078995-eval/rl-video-episode-0.mp4 ADDED
Binary file (36.7 kB). View file
 
videos/Acrobot-v1__dqn__1__1671078995-eval/rl-video-episode-1.mp4 ADDED
Binary file (74.9 kB). View file
 
videos/Acrobot-v1__dqn__1__1671078995-eval/rl-video-episode-8.mp4 ADDED
Binary file (60.4 kB). View file