TajaKuzman
commited on
Commit
•
83a7051
1
Parent(s):
0e3e5b2
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,250 @@
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
3 |
+
|
4 |
+
language:
|
5 |
+
- multilingual
|
6 |
+
- af
|
7 |
+
- am
|
8 |
+
- ar
|
9 |
+
- as
|
10 |
+
- az
|
11 |
+
- be
|
12 |
+
- bg
|
13 |
+
- bn
|
14 |
+
- br
|
15 |
+
- bs
|
16 |
+
- ca
|
17 |
+
- cs
|
18 |
+
- cy
|
19 |
+
- da
|
20 |
+
- de
|
21 |
+
- el
|
22 |
+
- en
|
23 |
+
- eo
|
24 |
+
- es
|
25 |
+
- et
|
26 |
+
- eu
|
27 |
+
- fa
|
28 |
+
- fi
|
29 |
+
- fr
|
30 |
+
- fy
|
31 |
+
- ga
|
32 |
+
- gd
|
33 |
+
- gl
|
34 |
+
- gu
|
35 |
+
- ha
|
36 |
+
- he
|
37 |
+
- hi
|
38 |
+
- hr
|
39 |
+
- hu
|
40 |
+
- hy
|
41 |
+
- id
|
42 |
+
- is
|
43 |
+
- it
|
44 |
+
- ja
|
45 |
+
- jv
|
46 |
+
- ka
|
47 |
+
- kk
|
48 |
+
- km
|
49 |
+
- kn
|
50 |
+
- ko
|
51 |
+
- ku
|
52 |
+
- ky
|
53 |
+
- la
|
54 |
+
- lo
|
55 |
+
- lt
|
56 |
+
- lv
|
57 |
+
- mg
|
58 |
+
- mk
|
59 |
+
- ml
|
60 |
+
- mn
|
61 |
+
- mr
|
62 |
+
- ms
|
63 |
+
- my
|
64 |
+
- ne
|
65 |
+
- nl
|
66 |
+
- no
|
67 |
+
- om
|
68 |
+
- or
|
69 |
+
- pa
|
70 |
+
- pl
|
71 |
+
- ps
|
72 |
+
- pt
|
73 |
+
- ro
|
74 |
+
- ru
|
75 |
+
- sa
|
76 |
+
- sd
|
77 |
+
- si
|
78 |
+
- sk
|
79 |
+
- sl
|
80 |
+
- so
|
81 |
+
- sq
|
82 |
+
- sr
|
83 |
+
- su
|
84 |
+
- sv
|
85 |
+
- sw
|
86 |
+
- ta
|
87 |
+
- te
|
88 |
+
- th
|
89 |
+
- tl
|
90 |
+
- tr
|
91 |
+
- ug
|
92 |
+
- uk
|
93 |
+
- ur
|
94 |
+
- uz
|
95 |
+
- vi
|
96 |
+
- xh
|
97 |
+
- yi
|
98 |
+
- zh
|
99 |
+
|
100 |
+
tags:
|
101 |
+
- text-classification
|
102 |
+
- genre
|
103 |
+
- text-genre
|
104 |
+
|
105 |
+
widget:
|
106 |
+
- text: "On our site, you can find a great genre identification model which you can use for thousands of different tasks. For free!"
|
107 |
+
|
108 |
---
|
109 |
+
|
110 |
+
# Multilingual text genre classifier xlm-roberta-base-multilingual-text-genres
|
111 |
+
|
112 |
+
Text classification model based on [`xlm-roberta-base`](https://huggingface.co/xlm-roberta-base) and fine-tuned on a combination of three datasets comprising of texts, annotated with genre categories: Slovene GINCO<sup>1</sup> dataset, the English CORE<sup>2</sup> dataset and the English FTD<sup>3</sup> dataset. The model can be used for automatic genre identification, applied to any text in a language, supported by the `xlm-roberta-base`.
|
113 |
+
|
114 |
+
## Model description
|
115 |
+
|
116 |
+
### Fine-tuning hyperparameters
|
117 |
+
|
118 |
+
Fine-tuning was performed with `simpletransformers`. Beforehand a brief hyperparameter optimization was performed and the presumed optimal hyperparameters are:
|
119 |
+
|
120 |
+
```python
|
121 |
+
model_args= {
|
122 |
+
"num_train_epochs": 15,
|
123 |
+
"learning_rate": 1e-5,
|
124 |
+
"max_seq_length": 512,
|
125 |
+
}
|
126 |
+
|
127 |
+
```
|
128 |
+
|
129 |
+
## Intended use and limitations
|
130 |
+
|
131 |
+
## Usage
|
132 |
+
|
133 |
+
### Use examples
|
134 |
+
|
135 |
+
```python
|
136 |
+
from simpletransformers.classification import ClassificationModel
|
137 |
+
model_args= {
|
138 |
+
"num_train_epochs": 15,
|
139 |
+
"learning_rate": 1e-5,
|
140 |
+
"max_seq_length": 512,
|
141 |
+
}
|
142 |
+
model = ClassificationModel(
|
143 |
+
"xlmroberta", "TajaKuzman/xlm-roberta-base-multilingual-text-genres", use_cuda=True,
|
144 |
+
args=model_args
|
145 |
+
|
146 |
+
)
|
147 |
+
predictions, logit_output = model.predict(["How to create a good text classification model? First step is to prepare good data. Make sure not to skip the exploratory data analysis. Pre-process the text if necessary for the task. The next step is to perform hyperparameter search to find the optimum hyperparameters. After fine-tuning the model, you should look into the predictions and analyze the model's performance. You might want to perform the post-processing of data as well and keep only reliable predictions.",
|
148 |
+
"On our site, you can find a great genre identification model which you can use for thousands of different tasks. With our model, you can fastly and reliably obtain high-quality genre predictions and explore which genres exist in your corpora. Available for free!"]
|
149 |
+
)
|
150 |
+
predictions
|
151 |
+
### Output:
|
152 |
+
### array([1, 0])
|
153 |
+
```
|
154 |
+
|
155 |
+
## Performance
|
156 |
+
|
157 |
+
|
158 |
+
## Citation
|
159 |
+
|
160 |
+
If you use the model, please cite the GitHub repository where the fine-tuning experiments are explained:
|
161 |
+
|
162 |
+
```
|
163 |
+
@misc{Kuzman2022,
|
164 |
+
author = {Kuzman, Taja},
|
165 |
+
title = {{Comparison of genre datasets: CORE, GINCO and FTD}},
|
166 |
+
year = {2022},
|
167 |
+
publisher = {GitHub},
|
168 |
+
journal = {GitHub repository},
|
169 |
+
howpublished = {\url{https://github.com/TajaKuzman/Genre-Datasets-Comparison}}
|
170 |
+
}
|
171 |
+
```
|
172 |
+
|
173 |
+
and the following paper on which the original model is based:
|
174 |
+
```
|
175 |
+
@article{DBLP:journals/corr/abs-1911-02116,
|
176 |
+
author = {Alexis Conneau and
|
177 |
+
Kartikay Khandelwal and
|
178 |
+
Naman Goyal and
|
179 |
+
Vishrav Chaudhary and
|
180 |
+
Guillaume Wenzek and
|
181 |
+
Francisco Guzm{\'{a}}n and
|
182 |
+
Edouard Grave and
|
183 |
+
Myle Ott and
|
184 |
+
Luke Zettlemoyer and
|
185 |
+
Veselin Stoyanov},
|
186 |
+
title = {Unsupervised Cross-lingual Representation Learning at Scale},
|
187 |
+
journal = {CoRR},
|
188 |
+
volume = {abs/1911.02116},
|
189 |
+
year = {2019},
|
190 |
+
url = {http://arxiv.org/abs/1911.02116},
|
191 |
+
eprinttype = {arXiv},
|
192 |
+
eprint = {1911.02116},
|
193 |
+
timestamp = {Mon, 11 Nov 2019 18:38:09 +0100},
|
194 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-1911-02116.bib},
|
195 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
196 |
+
}
|
197 |
+
```
|
198 |
+
|
199 |
+
To cite the datasets that were used for fine-tuning:
|
200 |
+
|
201 |
+
CORE dataset:
|
202 |
+
|
203 |
+
```
|
204 |
+
@article{egbert2015developing,
|
205 |
+
title={Developing a bottom-up, user-based method of web register classification},
|
206 |
+
author={Egbert, Jesse and Biber, Douglas and Davies, Mark},
|
207 |
+
journal={Journal of the Association for Information Science and Technology},
|
208 |
+
volume={66},
|
209 |
+
number={9},
|
210 |
+
pages={1817--1831},
|
211 |
+
year={2015},
|
212 |
+
publisher={Wiley Online Library}
|
213 |
+
}
|
214 |
+
```
|
215 |
+
|
216 |
+
GINCO dataset:
|
217 |
+
|
218 |
+
```
|
219 |
+
@InProceedings{kuzman-rupnik-ljubei:2022:LREC,
|
220 |
+
author = {Kuzman, Taja and Rupnik, Peter and Ljube{\v{s}}i{\'c}, Nikola},
|
221 |
+
title = {{The GINCO Training Dataset for Web Genre Identification of Documents Out in the Wild}},
|
222 |
+
booktitle = {Proceedings of the Language Resources and Evaluation Conference},
|
223 |
+
month = {},
|
224 |
+
year = {2022},
|
225 |
+
address = {Marseille, France},
|
226 |
+
publisher = {European Language Resources Association},
|
227 |
+
pages = {1584--1594},
|
228 |
+
url = {https://aclanthology.org/2022.lrec-1.170}
|
229 |
+
}
|
230 |
+
```
|
231 |
+
|
232 |
+
FTD dataset:
|
233 |
+
|
234 |
+
```
|
235 |
+
@article{sharoff2018functional,
|
236 |
+
title={Functional text dimensions for the annotation of web corpora},
|
237 |
+
author={Sharoff, Serge},
|
238 |
+
journal={Corpora},
|
239 |
+
volume={13},
|
240 |
+
number={1},
|
241 |
+
pages={65--95},
|
242 |
+
year={2018},
|
243 |
+
publisher={Edinburgh University Press The Tun-Holyrood Road, 12 (2f) Jackson's Entry~…}
|
244 |
+
}
|
245 |
+
```
|
246 |
+
|
247 |
+
The datasets are available at:
|
248 |
+
1. http://hdl.handle.net/11356/1467 (GINCO)
|
249 |
+
2. https://github.com/TurkuNLP/CORE-corpus (CORE)
|
250 |
+
3. https://github.com/ssharoff/genre-keras (FTD)
|